

Towards Next Generation Grids
Proceedings of the CoreGRID Symposium 2007

Towards Next Generation Grids
Proceedings of the CoreGRID Symposium 2007

August 27-28, Rennes, France

edited by

Thierry Priol
IRISA/INRIA
Rennes, France

Marco Vanneschi
University of Pisa
Pisa, Italy

Thierry Priol
IRISA/INRIA Rennes
Campus de Beaulieu
35042 RENNES CX
France
Email: thierry.priol@irisa.fr

Marco Vanneschi
Università di Pisa
Dipto. Informatica
Largo Bruno Pontecorvo,3
56127 PISA
Italy
Email: vannesch@di.unipi.it

Library of Congress Control Number: 2007930612

Towards Next Generation Grids: Proceedings of the CoreGRID Symposium 2007
Edited by Thierry Priol and Marco Vanneschi

ISBN 978-0-387-72497-3 e-ISBN 978-0-387-72498-0

Printed on acid-free paper.

c© 2007 Springer Science+Business Media, LLC
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection
with any form of information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

9 8 7 6 5 4 3 2 1

springer.com

Contents

Foreword ix
Contributing Authors xv

Part I Service Level Agreement and Quality of Service

NextGRID Architectural Concepts 3
David Snelling, Ali Anjomshoaa, Francis Wray, Achim Basermann, Mike Fisher, Mike
Surridge, Philipp Wieder

Virtual Domain Sharing in e-Science based on Usage Service Level Agreements 15
Cǎtǎlin L. Dumitrescu, Alexandru Iosup, Ozan Sonmez, Hashim Mohamed, and Dick
Epema

Optimal Closest Policy with QoS and Bandwidth Constraints 27
Veronika Rehn-Sonigo

An Open Architecture for QoS Information in Business Grids 37
Konstantinos Tserpes, Dimosthenis Kyriazis, Andreas Menychtas and Theodora Var-
varigou, Fabrizio Silvestri and Domenico Laforenza

Part II Trust, Security and Virtual Organization

Threat Analysis and Attacks on XtreemOS: a Grid–enabled Operating System 53
Amit D. Lakhani, Erica Y. Yang, Brian Matthews, Ian Johnson, Syed Naqvi, Gheorghe
C. Silaghi

A Utility-Based Reputation Model for Service-Oriented Computing 63
Gheorghe Cosmin Silaghi, Alvaro E. Arenas, Luis Moura Silva

Virtual Organization Management in XtreemOS: an Overview 73
Erica Y. Yang, Brian Matthews, Amit Lakhani, Yvon Jégou, Christine Morin, Oscar
David Sánchez, Carsten Franke, Philip Robinson, Adolf Hohl, Bernd Scheuermann,
Daniel Vladusic, Haiyan Yu, An Qin, Rubao Lee, Erich Focht, Massimo Coppola

Sealed Grid with Downloadable Services 83
Martin Kuba, Daniel Kouřil, Michal Procházka

vi

Part III Programming with Software Components

Interoperability of Grid component models: GCM and CCA case study 95
Maciej Malawski and Marian Bubak, Françoise Baude, Denis Caromel, Ludovic Henrio
and Matthieu Morel

A Component Framework for Application Web Services 107
Rainer Schmidt, Siegfried Benkner, and Maria Lucka

Towards dynamic adaptability support for M-W component based applications 117
Françoise André, Hinde Lilia Bouziane, Jérémy Buisson, Jean-Louis Pazat, Christian
Pérez

Part IV Communication and Networking

Total Exchange Performance Prediction on Grid Environments 131
Luiz Angelo Steffenel and Emmanuel Jeannot

Synthetic Coordinates for Disjoint Multipath Routing 141
Andrei Agapi, Thilo Kielmann, Henri E. Bal

Atomic Commitment in Transactional DHTs 151
Monika Moser, Seif Haridi

Part V Jobs, Information and Resources Management

Information Quality Evaluation for Grid Information Services 165
Wei Xing, Oscar Corcho, Carole Goble, Marios Dikaiakos

Grid infrastructure tools for multi-level job management 175
Erik Elmroth, Peter Gardfjäll, Arvid Norberg, Johan Tordsson, and Per-Olov Östberg

AMon - a User-Friendly Job Monitoring for the Grid 185
Ralph Müller-Pfefferkorn, Reinhard Neumann, Thomas William

Co-Allocating Compute and Network Resources 193
Thomas Eickermann, Lidia Westphal, Oliver Wäldrich, Wolfgang Ziegler, Christoph
Barz, Markus Pilz

Part VI Programming Methodologies

Adding metadata to Orc to support reasoning about grid programs 205
Marco Aldinucci, Marco Danelutto, Peter Kilpatrick

A Framework for Analysis of Legacy Code Migration to Grid Environment 215
Srujan Kumar Enaganti, Anish Damodaran and Anirban Chakrabarti

Code Transfer Tools for Grid Programming 225

Contents vii

Cǎtǎlin L. Dumitrescu, Jan Dünnweber, Philipp Lüdeking, Sergei Gorlatch, Ioan Raicu,
Ian Foster

Part VII Workflow Management

Towards a Light-weight Workflow Engine in the ASKALON Grid Environment 239
Jun Qin, Marek Wieczorek, Kassian Plankensteiner, Thomas Fahringer

Supporting Workflow-level PS Applications by the P-GRADE Grid portal 253
Peter Kacsuk and Zoltan Farkas and Gergely Sipos and Gabor Hermann, Tamas Kiss

Applying patterns for porting complex workflows onto the Grid 265
Alex Villazón, Malik Junaid, Mumtaz Siddiqui, and Thomas Fahringer

Part VIII Data Management

Real Time Classification Mechanism for the Causes of Data Loss 279
Phillip M. Dickens

Dependable Grid Services: A Case Study with OGSA-DAI 291
Javier Alonso and Jordi Torres, Luis Moura Silva and Paulo Silva

Author Index 301

Foreword

The symposium was organised by the Network of Excellence CoreGRID
funded by the European Commission under the sixth Framework Programme
IST-2003-2.3.2.8 starting September 1st, 2004 for a duration of four years.
CoreGRID aims at strengthening and advancing scientific and technological
excellence in the area of Grid and Peer-to-Peer technologies. To achieve
this objective, the network brings together a critical mass of well-established
researchers (155 permanent researchers and 168 PhD students) from forty one
institutions who have constructed an ambitious joint programme of activities.

The final programme has been organized into eight sessions (parallel ses-
sions are denoted by letters A and B):

1.A. Service Level Agreement and Quality of Service
1.B. Trust, Security and Virtual Organization
2.A. Programming with Software Components
2.B. Communication and Networking
3.A. Job, Information and Resource Management
3.B. Programming Methodology
4.A. Workflow Management
4.B. Data Management

The Service Level Agreement and Quality of Service session presents the Next-
GRID architectural principles and components to support a SLA framework and
service construction and composition (Snelling, Anjomshoaa); the NextGRID
approach is further developed in (Tserpes, Kyriazis, Menychtas, Varvarigou,
Silvestri, Laforenza) through a design pattern for SLA monitoring and eval-
uating in business applications. Moreover, this session contains a solution to
the virtual domain sharing based on usage SLA (Dumitrescu, Iosup, Sonmez,
Mohamed, Epema), and an optimal algorithm for the replica-management opti-
mization problem taking into account of QoS and bandwidth constraints (Rehn).

In the Trust, Security and Virtual Organization session, two papers are
derived from the XtreemOS project: in (Yang) the XtreemOS vision of native
VO support and management, as well as a preliminary security architecture, is

x

presented; in (Lakhani) the security support is analyzed and evaluated using the
attacker tree methodology. Moreover, (Arenas, Silaghi, Silva) present a repu-
tation model tailored to service-oriented architectures through the exploitation
of monitoring supports. The approach based on dedicated hardware virtual
machines for service deployment is investigated in (Kuba, Kouril, Prochazka).

Programming issues are discussed in three distinct sections on Components,
Methodology, and Workflow, respectively.

In the Programming with Software Components session, the paper by
(Malawski, Bubak, Buade, Caromel, Henrio, Morel) deals with the prob-
lemof interoperabilityofcomponentmodels throughacase studycentered
on CCA and the Fractal-based GCM model. (Schmidt, Benker, Lucka)
propose a framework based upon CCA layered in top of Web services and
the Vienna Grid Environment. The problem of dynamic adaptability of
component-based applications is studied in (André, Bouziane, Buisson,
Pazat, Perez) with reference to the master-worker model of computation.

In the Programming Methodology session, three issues are investigated:
an approach to the evaluation and refinement of Grid applications through
a formal specification in Orc exploting domain knowledge information
(Danelutto, Kilpatrick, Aldinucci); a generic framework for the analysis
and performance evaluation of legacy application migration (Enaganti,
Damodaran, Chakrabarti); and the study of trade-offs between different
code tranfer techniques, namely WS-GRAM and a higher order com-
ponent approach, in a bioinformatics case (Dumitrescu, Duennweber,
Luedeking, Gorlatch, Raicu, Foster).

IntheWorkflowManagementsession, (Qin, Wieczorek, Fahringer)present
a light-weight workflow engine based on just-in-time scheduling, auto-
matically generated performance predictions and task prioritization. The
support of specific computation models at the workflow level is studied in
(Kacsuk, Farkas, Sipos, Hermann, Kiss) with reference to master-worker
applications in the context of the P-GRADE portal, and in (Villazon,
Junaid, Siddiqui, Fahringer) with reference to a set of patterns for porting
applications on the grid.

In the session Job, Information and Resource Management, the paper by
(Xing, Corcho, Goble, Dikaiakos) discusses an evaluation framework for infor-
mation services in the context of EGEE infrastructures. An approach to a Grid
architecture based on a set of independent and composable tools for middle-
ware, brokering and submission is presented in (Elmroth, Gardfjäll, Norberg,
Tordsson, Ostgerg). Monitoring job status and resource usage, according to
a user-oriented and interactive approach, is described in (Mueller, Nuemann,

Foreword xi

William). Finally, in (Ziegler, Eickermann, Kirtchakova, Wäldrick, Barz, Pilz)
an integrated network and resource management system is presented based on
the unifying concept of Bandwidth on Demand.

The session Data Management contains two contributions: (Dickens) studies
the integration of a real-time classification mechanism into an high-performance
data-transfer system, exploiting packet patterns and statistics; (Alonso Lopez,
Torres, L. Silva, P.F: Silva) present a software rejuvenation scheme to improve
the availability of Grid services and apply it to OGSA-DAI server crashes.

The session Communication and Networking contains contributions on the
application and specialization of communication techniques to grid architec-
tures. (Steffenel, Jeannot) study a two-phase implementation and performance
model of the all-to-all mechanism in a context characterized by high congestion
of network resources. (Agapi, Kielmann, Bal) address the scalability problem
of routing packets on multiple, router-disjoint paths in the Internet using large-
scale overlay networks, proposing and evaluating a synthetic coordinates-based
approach. (Moser, Haridi) investigate atomic commitment in a transactional
database on top of a DHT, aiming to reduce the number of communication
rounds and metadata amount and to achieve dynamic adaptability.

The Programme Committee who made the selection of papers included:

Arenas, A., RAL-CCLRC, UK
Atkinson, M., University of Edinburgh, UK
Badia, R., Technical University of Catalonia, Spain
Banâtre, J-P., University of Rennes 1/INRIA, France
Bal, H., Free University Amsterdam, The Netherlands
Bubak, M., Inst. of Comp. Sci. and Cyfronet, Poland
Buyya, R., University of Melbourne, Australia
Caromel, D., University of Nice/INRIA, France
Cunha, J., New University of Lisbon, Portugal
Danelutto, M., University of Pisa, Italy
Depei, Q., Xi’an Jiaotong University and Beihang University, China
Desprez, F., INRIA, France
Dikaiakos, M., Univ. of Cyprus, Cyprus
Druais, S., Thales, France
Fisher, M., BT, UK
Fahringer, T., University of Innsbruck, Austria
Foster, I., Argonne National Laboratory, University of Chicago, USA
Fragopoulou, V., Forth, Greece
Gagliardi, F., Microsoft, Switzerland
Getov, V., University of Westminster, UK
Gorlatch, S., University of Muenster, Germany

xii

Gannon, D., University of Indiana, USA
Guisset, P., CETIC, Belgium
Kacsuk, P., SZTAKI, Hungary
Kranzlmueller, D., Joh. Kepler University Linz, Austria
Kuonen, P., Univ. Of Applied Sciences of Fribourg, Switzerland
Laforenza, D., ISTI-CNR, Italy
Laure, E., CERN, Switzerland
Lee, C., The Aerospace Corp., USA
Lee, J., KISTI, Korea
Lengauer, C., University of Passau, Germany
Massonet, P., CETIC, Belgium
Matsuoka, S., Tokyo Institute of Technology, Japan
Matyska, L., Masaryk University, Czech Republic
Meyer, N., Poznan Supercomputing Center, Poland
Moreau, L., Univ. of Southampton, UK
Nabrzyski, J., Poznan Supercomputing and Networking Center., Poland
Pasin, M., Universidade Federal de Santa Maria, Brasil
Perez, C., IRISA/INRIA, France
Perrott, R., Queen’s University of Belfast, UK
Piquer, J-M, University of Chile, Chile
Reinefeld, A., ZIB Berlin, Germany
Ristol, S., ATOS, Spain
Sekiguchi, S., AIST, Japan
Sloot, P., Univ. of Amsterdam, The Netherlands
Snelling, D., Fujitsu Laboratories of Europe, UK
Schwiegelshohn, U., University of Dortmund, Germany
Talia, D., Università della Calabria, Italy
Varvarigou, T., NTUA, Greece
Xu, Z. ICT, China
Yahyapour, R., University of Dortmund, Germany
Ziegler, W., Fraunhofer-Institute for Algorithms and Scientific Computing,
Germany

The Symposium Organising Committee included:

P. Palosaari, IRISA/INRIA, Rennes, France
C. Pérez, IRISA/INRIA, Rennes, France
T. Priol, IRISA/INRIA, Rennes, France

Foreword xiii

All papers in this volume were additionally reviewed by the following external
reviewers whose help we gratefully acknowledge:

Martin Alt
Rachana Ananthakrishnan
Eduardo Argollo
Mark Baker
Alessandro Basso
Nafeesa Bohra
Hinde Bouziane
Eugenio Cesario
Carmela Comito
Rubing Duan
Jan Duennweber
Tim Freeman
Stefan Freitag
Anastasios Gounaris
Christian Grimme
Mikael Hoegqvist
Gracjan Jankowski
Michal Jankowski
Kate Keahey
Miroslaw Kupczyk
Dymosthenis Kyriazis
Tobias Langhammer
Joachim Lepping
Antonios Litke
Jens Mueller
Syed Naqvi
Bartek Palak
Mumtaz Siddiqui
Jim Smith
Giandomenico Spezzano
Jan Stender
Jeyarajan Thiyagalingam
Linh Truong
Kostandinos Tserpes
Philipp Wieder
Erica Yang

xiv

Special thanks are due to the authors of all submitted papers, the members of
the Programme Committee and the Organising Committee, and to all reviewers,
for their contribution to the success of this event.

Rennes, France, August 2007

Dr. Thierry Priol and Prof. Marco Vanneschi (Symposium
Chairs)

Contributing Authors

Andrei Agapi Vrije University Amsterdam, NL

Marco Aldinucci University of Pisa, IT

Javier Alonso Technical University of Catalonia (UPC), ES

Françoise André University of Rennes, FR

Ali Anjomshoaa EPCC, University of Edinburgh, UK

Alvaro Arenas CCLRC Rutherford Appleton Laboratory, UK

Henri Bal Vrije Universiteit, NL

Christoph Barz University of Bonn, DE

Achim Basermann NEC Europe Limited, C&C Research Laboratories, DE

Françoise Baude INRIA Sophia-Antipolis, FR

Siegfried Benkner University of Vienna, AT

Hinde Bouziane INRIA, FR

Marian Bubak AGH University of Science and Technology, PL

xvi

Jeremy Buisson IRISA/INSA de Rennes, FR

Denis Caromel Univ. of Nice, CNRS/I3S, INRIA, IUF, FR

Anirban Chakrabarti Infosys Technologies, IN

Massimo Coppola ISTI/CNR, IT

Oscar Corcho University of Manchester, UK

Anish Damodaran Infosys Technologies Limited, IN

Marco Danelutto Univesity of Pisa, IT

Phillip Dickens University of Maine, US

Marios Dikaiakos University of Cyprus, CY

Cǎtǎlin Dumitrescu The University of Münster, DE

Jan Dünnweber University of Münster, DE

Thomas Eickermann Central Institute for Applied Mathematics, Research
Centre Jülich, DE

Erik Elmroth Umeå University, SE

Srujan Kumar Enaganti Infosys Technologies Limited, IN

Dick Epema Delft University of Technology, NL

Thomas Fahringer University of Innsbruck, AT

Zoltan Farkas Mta Sztaki, HU

Contributing Authors xvii

Mike Fisher BT Group Chief Technology Office, UK

Erich Focht NEC HPC Europe, DE

Ian Foster University of Chicago, US

Carsten Franke SAP UK, UK

Peter Gardfjäll Umeå University, SE

Carole Goble University of Manchester, UK

Sergei Gorlatch University of Münster, DE

Seif Haridi KTH, SE

Ludovic Henrio INRIA Sophia-Antipolis, FR

Gabor Hermann Mta Sztaki, HU

Adolf Hohl SAP AG, DE

Alexandru Iosup Delft University of Technology, NL

Emmanuel Jeannot INRIA - Lorraine, FR

Yvon Jégou INRIA, FR

Ian Johnson STFC (Formerly CCLRC), UK

Malik Junaid University of Innsbruck, AT

Peter Kacsuk MTA SZTAKI Research Institute, HU

Thilo Kielmann Vrije Universiteit, NL

xviii

Peter Kilpatrick Queen’s University of Belfast, UK

Tamas Kiss University of Westminster, UK

Daniel Kouřil Masaryk University, CZ

Martin Kuba Masaryk University, CZ

Dimosthenis Kyriazis National Technical University of Athens, GR

Domenico Laforenza Information Science and Technologies Institute (ISTI),
IT

Amit Lakhani STFC (Formerly CCLRC), UK

Rubao Lee ICT, CN

Maria Lucka Department of Scientific Computing, AT

Philipp Lüdeking The University of Münster, DE

Maciej Malawski AGH University of Science and Technology, PL

Brian Matthews STFC, UK

Andreas Menychtas National Technical University of Athens, GR

Hashim Mohamed Technical University of Delft, NL

Matthieu Morel INRIA Sophia-Antipolis, FR

Christine Morin IRISA / INRIA, FR

Monika Moser Zuse Institute Berlin, DE

Contributing Authors xix

Ralph Müller-Pfefferkorn Technische Universität Dresden, DE

Syed Naqvi STFC (Formerly CCLRC), UK

Reinhard Neumann Technische Universität Dresden, DE

Arvid Norberg Umeå University, SE

Per-Olov Ostberg Umeå University, SE

Jean-Louis Pazat INSA de Rennes, FR

Christian Pérez INRIA, FR

Markus Pilz University of Bonn, DE

Kassian Plankensteiner University of Innsbruck, AT

Michal Procházka Masaryk University, CZ

An Qin ICT, CN

Jun Qin University of Innsbruck, AT

Ioan Raicu The University of Chicago, US

Veronika Rehn-Sonigo LIP laboratory, UMR CNRS-INRIA 5668, ENS Lyon,
FR

Philip Robinson SAP UK, UK

Oscar Sánchez INRIA, FR

Bernd Scheuermann SAP AG, DE

xx

Rainer Schmidt University of Vienna, AT

Mumtaz Siddiqui University of Innsbruck, AT

Gheorghe Cosmin Silaghi University of Coimbra, PT

Luis Moura Silva University of Coimbra, PT

Paulo Silva University of Coimbra, PT

Fabrizio Silvestri ISTI-CNR, IT

Gergely Sipos Mta Sztaki, HU

David Snelling Fujitsu Laboratories of Europe, UK

Ozan Sonmez Technical University of Delft, NL

Luiz Angelo Steffenel Université Nancy 2, FR

Mike Surridge IT Innovation Centre, UK

Johan Tordsson Umeå University, SE

Jordi Torres Technical University of Catalonia (UPC), ES

Konstantinos Tserpes National Technical University of Athens, GR

Theodora Varvarigou National Technical University of Athens, Greece, GR

Alex Villazón University of Innsbruck, AT

Daniel Vladusic Xlab, SI

Oliver Wäldrich Fraunhofer Institute SCAI, DE

Contributing Authors xxi

Lidia Westphal Central Institute for Applied Mathematics, Research Centre
Jülich, DE

Marek Wieczorek University of Innsbruck, AT

Philipp Wieder Central Institute for Applied Mathematics, Research Centre
Jülich, DE

Thomas William Technische Universität Dresden, DE

Francis Wray EPCC, University of Edinburgh, UK

Wei Xing University of Manchester, UK

Erica Yang STFC (Formerly CCLRC), UK

Haiyan Yu Institute of Computing Technology of Chinese Academy of Sci-
ences, Beijing, China, CN

Wolfgang Ziegler Fraunhofer-Institute for Algorithms and Scientific Comput-
ing (SCAI), DE

I

SERVICE LEVEL AGREEMENT AND QUALITY
OF SERVICE

NEXTGRID ARCHITECTURAL CONCEPTS

David Snelling
Fujitsu Laboratories of Europe Limited, Hayes, Middlesex, UB4 8FE, United Kingdom
david.snelling@uk.fujitsu.com

Ali Anjomshoaa, Francis Wray
EPCC, University of Edinburgh, Edinburgh, EH9 3JZ, United Kingdom
ali@epcc.ed.ac.uk, f.wray@epcc.ed.ac.uk

Achim Basermann
NEC Europe Limited, C&C Research Laboratories, D-53757 Sankt Augustin, Germany
basermann@ccrl-nece.de

Mike Fisher
BT Group Chief Technology Office, London, EC1A 7AJ, United Kingdom
mike.fisher@bt.com

Mike Surridge
IT Innovation Centre, Southampton, SO16 7NP, United Kingdom
ms@it-innovation.soton.ac.uk

Philipp Wieder
Central Institute for Applied Mathematics, Research Centre Jülich, 52425 Jülich, Germany
ph.wieder@fz-juelich.de

Abstract This paper outlines the conceptual model of the NextGRID architecture. This
conceptual model consists of a set of architectural principles and a simple
decomposition of the architecture in order to facilitate common understanding of
the architecture and its development.

Keywords: Grid Architecture, Service Level Agreement, Service Grid.

4

1. Introduction
The NextGRID project vision is of future Grids, which are economically

viable; in which new and existing business models are possible; in which
development, deployment and maintenance are easy; and in which the pro-
visions for security and privacy give confidence to businesses, consumers and
the public.

The goal and primary output of NextGRID is to define the architecture of
the Next Generation Grid. This will prepare the way for the mainstream use
of Grid technologies and their widespread adoption by organisations and indi-
viduals from across the business and public domains. In addition to the design
of architectural Grid concepts, the NextGRID architecture will facilitate the
development of key middleware components, application support mechanisms,
know-how and standards that underpin the Next Generation Grid.

2. NextGRID Architectural Principles
The NextGRID architectural principles define the overall characteristics of

the NextGRID architecture and outline its key components. These principles
define the personality of the NextGRID architecture.

The primary architectural principles of the NextGRID project are:

Service Level Agreement Driven Dynamics: All interactions in
NextGRID are predicated by a Service Level Agreement (SLA)
that is dynamically created and aims to ensure that the relation-
ship between a provider and a consumer is well defined and under-
stood. This SLA based approach applies to all service interactions,
thereby providing a uniform framework for the management and
operation of all Quality of Service (QoS) aspects.

Service Construction and Composition: As a dynamic Grid in-
frastructure, NextGRID provides extensive capabilities for service
construction and composition. This includes traditional interface
composition, various forms of workflow-enabled orchestration,
and support for the dynamic extension of service capabilities.

Minimal Service Infrastructure: All services operating in a Next-
GRID environment can expect to find a minimal service infrastruc-
ture. This infrastructure is manifested as a set of capabilities, such
as service lifetime management or service registries, which are
either available in the environment or exhibited by peer services.

2.1 Service Level Agreement Driven Dynamics
A successful NextGRID architecture will have a number of stakeholders,

ranging from the large multi-national enterprise organisations, down through
the large nationally based enterprises, service providers, small and medium

NextGRID Architectural Concepts 5

sized enterprises, academic institutions and individual end users. Interactions
will most likely involve a combination of these parties.

A SLA covers the entire lifecycle of the interaction with a service provider,
from the negotiation of the QoS that the consumer can expect, through to the
deployment, execution and monitoring of the service to decommissioning.

2.1.1 Overview of Service Level Agreements. NextGRID believes
that SLAs should be used to build relationships between service providers and
consumers. Neither the service provider nor the consumer will gain a significant
advantage by violating a SLA. The customer will not get the service they require,
and the provider’s reputation will be damaged. It is proposed, therefore, to
have a framework that is less focused on monitoring of every element of every
transaction in isolation, but is rather more focused on providing an overall level
of service in terms of the business being carried out.

We believe that a SLA is a key component to be considered at all stages
in the lifecycle of a service provision. The policies for managing the service,
the mechanisms for monitoring it, and the acceptable quality of service terms
to offer to a consumer should be produced at the same time as the service is
designed and developed. This ensures that the required information is available
to be able to guarantee the QoS levels necessary, such that a consumer will
consider entering into an agreement with a provider to use a service.

2.1.2 SLA Structure and Contents. A SLA exists between two parties,
the service provider and the consumer. By building a robust and non-ambiguous
SLA framework, the need for trusted third parties, who provide independent
verification of monitoring information to give confidence to the consumer, can
be reduced and replaced with the provider and consumer performing their own
monitoring in a mutually trusting way.

Therefore, a considerable amount of work in NextGRID has been focusing
on the structure of the SLA, so it can provide all the information that other
components require, in a standard, structured way that allows for automated and
more economic processing. We see the SLA as containing not only information
relating to the specific guarantees offered on the performance of the service,
what we categorise as dynamic terms, but also relating to the commercial due
diligence terms, which we categorise as static terms.

Static terms describe the policies in place in the environment in which the
service will be deployed and executed. They are less likely to change be-
tween many SLAs between two parties. In dynamic terms, we identify higher
level terms, which are closer to those understood by consumers or applications.
Guarantees are offered on these terms.

Service levels must be defined in terms of the value delivered to the customer.
It would be a bad idea to reveal what computational resources would be used

6

to deliver a service, as these suggest a much lower value to the customer. Of
course, the service provider has to know how to manage their resources to
deliver the specified results, and what the business-level consequences will be
if they experience a resource shortfall.

To make this work, mapping mechanisms are needed as shown in Figure 1: to
translate business-level objectives defined in a SLA into resource management
policies that can be applied at the technical level within the service provider’s
environment, and to translate technical-level monitoring information into busi-
ness level consequences that can be compared with a SLA, and used to provide
meaningful feedback to the consumer.

Business Perspective

Technical Perspective

Consumer
Service

Provider

Service

Guarantees

License /
Customer

Obligations

SLA

Figure 1. Business level SLAs and technical resource management are related, but logically
separated into a business perspective and a technical perspective, respectively.

2.1.3 Protocol. Negotiation of a SLA should be as flexible as possible,
but at the same time aligned with the negotiated service’s lifetime. It is coun-
terproductive to use a protocol needing a longer time span to negotiate than is
expected for performing the requested service.

To keep the negotiation effort as low as possible, NextGRID employs a
discrete offer protocol: the service provider offers the service customer some
services (e.g. Services A, B and C), from which the service customer has to
choose one. There is no scope for negotiation as the parameters of the offered
services are fixed. In a symmetric fashion, the customer may also make the
offer and have it accepted or rejected by the provider.

NextGRID Architectural Concepts 7

2.2 Service Construction and Composition
The NextGRID architecture is intended to support rapid and dynamic fed-

eration of resources to support user communities. Architecturally, we assume
that applications may be constructed by composing NextGRID services, each
of which has a set of common properties and behaviours. When executing ap-
plications, we can assume that certain core infrastructure services or properties
are available in the environment of the application. A key requirement is that
such federation mechanisms should result in architecturally self-similar struc-
tures that are themselves amenable to NextGRID composition rules, leading to
an environment that enables recursive service composition.

The basic modes of service composition are:

Resource sharing: arises when the consumer of a service shares
it with another consumer. Resource sharing is strictly a federation
between consumers. It makes the consumers part of a related set
of interactions as seen by the service provider. Resource sharing
is very important for business Grids.

Resource orchestration: arises when a consumer of two services
asks them to interact in some fashion. This process effectively
combines resources from two service providers to meet the needs
of the common consumer.

Resource encapsulation: arises when a service provider delivers
a service to a customer through a third party service provider, with
no direct interactions between the third party service provider and
the consumer.

2.2.1 Implications for SLAs. Resource sharing and orchestration both
involve the creation of new bilateral relationships with a service, which are ini-
tiated by an existing consumer. Every bilateral relationship should be governed
by a SLA. Our investigations suggest that it should be possible to automatically
infer the terms of a new SLA from the terms of original SLAs in place with the
consumer. Resource encapsulation does not impose requirements on individual
SLAs, but has implications for the overall SLA architecture.

Figure 1 shows that there should always be a mapping between the terms of
a SLA related to a service, and the technical management policies and actions
needed to deliver that service. The view of encapsulation as a resource pattern
then becomes useful in the design of SLAs and for SLA management mecha-
nisms. Instead of using a single mapping mechanism directly from the business
level to the resource level, one can introduce intermediate level services and
simplify the mappings at each stage.

Figure 2 shows an example of this approach, in which 4 distinct levels are
identified. Here the communication (and agreement) between a service con-
sumer and a service provider is on the business level. Instead of mapping

8

BusinessConsumer
Service
Provider

Service

Guarantees

SLA

Service
Provider

Service

Guarantees

SLA

Service
Provider

Service

Guarantees

SLA

Fabric

Service

ApplicationConsumer

Obligations

Obligations

Obligations

Consumer

Consumer

Figure 2. SLAs and different service levels.

directly to the fabric (computational resource, disk space, networks, etc), this
service is provided by encapsulating other services, each encapsulation being
governed by its own SLA. The management policies specify the requirements
to be met by SLAs from the layer below and the monitoring and corrective
action to be used to detect and recover from any breaches of those SLAs.

2.3 Minimal Service Infrastructure
The key aspects of a minimal Grid infrastructure lead to a minimal set of

expected Grid service behaviours. These aspects are:
Communication – protocols and languages through which NextGRID
components communicate;
Behaviour – interfaces which dictate service behaviour are imple-
mented (actually inherited) by all NextGRID components;
Management systems – those service management systems, e.g.
for Naming and Addressing for service discovery, which are always
available to Grid users and services; and
Schemas – schemas that underpin NextGRID concepts.

Withrespect tobehavioural interfaces, it isadesignrequirementforNextGRID
services to expose a minimal behavioural interface. The minimal Grid behav-
iour implemented by all NextGRID entities is largely driven by the degree of
basic management functionality required by all services. Information discov-
ery and service introspection provide the requirements for some of this basic
management functionality. These behaviours are now being described in a
document as a NextGRID Basic Profile.

NextGRID Architectural Concepts 9

3. NextGRID Architectural Decomposition
In order to help understand and build the architectural vision of the NextGRID

project, some form of system decomposition is necessary. Frequently, systems
can be decomposed into a layered architecture, where each layer communicates
only with its adjacent layers. However, increasing complexity of Grid systems
has resulted in the erosion of this simple approach, with some aspects of the
system (e.g. security and messaging) spanning all layers of the architecture.

The NextGRID architecture is decomposed into four concepts, as follows:

Schemas: Components of a system need a set of common schemas
to communicate. The primary schema categories are: Message
schemas: describing the contents of messages; Naming and
Addressing schemas: providing data structures (based on WS-
Addressing [1]) to address and access services; Security schemas:
defining the format for policy and token contents and the basis for
token and policy languages; SLA schemas: defining the
negotiation and agreement languages for QoS agreements; Service
Description schemas: defining the service discovery framework;
Activity schema: providing the language to describe activities
(e.g. programme executions and Web Service invocations); and
Query schemas: providing the infrastructure for searching ser-
vice and information registries.

These schemas are the glue that ties the various systems, which constitute
the other three concepts of the NextGRID architecture, as follows:

Management Systems: These components provide the minimal
support for the NextGRID architecture to operate, but do not de-
fine any operational functions. They are approximately parallel
to the basic schema categories discussed above. The bulk of the
NextGRID architecture is concerned with these systems.

Functional Systems: These components provide the conceptual
framework for any functional activities that can be carried out.
Their detailed definition is not part of the NextGRID architecture.
They can be roughly categorised in terms of their relationship to
data, and their functions exhibit some commonality in terms of
cost-per-performance prediction. They are served by NextGRID
Management Systems.

Orchestration Systems: These components manage the dynamic
composition of services, facilitated by orchestration systems rang-
ing from simple service invocators, through to complex workflow
processing engines.

Figure 3 depicts this decomposition and some of the interactions expected
between the components.

10

Schemas

Registry

Orchestration
Naming and
Addressing

Functional

Trust and
Security

SLA
Management

ResolveInvoke

Query

Negotiate
SLA

Get
Tokens

Get Token
Assertions

Get Token
Assertions

Get Token
Assertions

Administer
Policy

Monitor/
Control

Register/
Update

Register/
Update/
Query

Get Token
Assertions

Generate/
Verify

Figure 3. Overview of NextGRID Component Model and basic interactions.

3.1 Management Systems
3.1.1 Naming and Addressing. A naming service should be autono-
mous, scalable, distributed, secure, reliable, trusted, and have global scope.
Desirably, the naming scheme (and a name resolution service) should also
be fast, efficient, extensible and support internationalisation. The NextGRID
Naming Service will be a combination of the Handle.net [2] system and a Web
Services front end based on the WS-Naming [3] profile.

The operational capabilities of the naming service include: (1) creation of
a contextual and unique name; (2) verification of a user selected name for
uniqueness; and (3) access to the registry of addresses and aliases for a given
name.

Use-cases for naming and addressing reveal several actors. Firstly, a name
creator, who either requests or validates a name for an entity and then registers
that name with some information (e.g. address or alias) pertaining to that name.
The other primary actor is the address (or information) finder, who uses the name
as input to query a registry for information about (e.g. address of) the named
entity.

3.1.2 Security Facility. NextGRID provides dynamic authorisation and
claims based security. The Security Tokens and Dynamic Authorisation ser-
vices are simple services that are easy to create and operate, but their com-
bination enable services to decide dynamically, on a request by request basis,
whether a certain action or request is permitted.

NextGRID Architectural Concepts 11

There are two services that are central to the security facility. These are:
The Token Manager: a Policy Decision Point that provides security access
tokens based on policy information pertaining to the entities to be accessed and
the claims made by a requestor; and The Policy Manager: provides interfaces
for administrating the policy that governs access to a service.

The fundamental characteristic that makes these services unique to NextGRID
is the emphasis placed on dynamic decision-making and policy management.
NextGRID security and access policy can change dynamically throughout the
lifecycle of a SLA based interaction between two entities.

3.1.3 SLA Management. The NextGRID SLA management system is
autonomous. Once instantiated the system needs to include capabilities for ne-
gotiation of new SLAs, and for providing support for SLAs currently in effect.
The latter includes monitoring running SLAs for QoS; accounting for SLA ex-
ecution during and on completion; and enforcement of post-execution require-
ments, e.g. penalties and bonuses. These need to take place autonomously from
the service provider’s perspective or, if desired, by using trusted third parties.
It is hoped that using trusted third parties for SLA management can be avoided
in the NextGRID architecture through employing sufficient trust anchors.

3.1.4 Registry. In dynamic Grid environments, service endpoints cannot
be hard-coded into applications. Rather, the location of available services,
which meet the immediate needs of a consumer, must be found dynamically at
application run-time. Service registries in NextGRID allow clients to search for
required services among a set of available services. Multiple registries are used
to support different environments and can exist in hierarchies for scalability.

3.2 Functional Systems
The NextGRID functional systems consists of a set of components that pro-

vide the conceptual framework for any functional activities that can be car-
ried out using the NextGRID architecture. These functional systems can be
described in terms of their relation to data.

3.2.1 Data Access. Access to data will be made available through data
services. Data in all forms including, streams, sequences, files, images, traces,
databases and archives provide input to analyses and models used by businesses,
researchers, designers and decision makers. Abstractly, data access can be
described as data where it is now.

3.2.2 Data Transfer. Like for data access, data transfer to and from data
resources will be made available through data services. Additionally, the long-
term goal will be to support a multitude of data transport protocols which provide

12

both file transfer and remote movement of data as part of another operation.
Such operations include database query or update processing, reading individual
elements within a file, or consuming streams of data from live sources, e.g.
scientific instruments, online market tickers, etc. Abstractly, data transfer can
be thought of as the movement of data in space.

3.2.3 Data Processing. All computation in a NextGRID architecture
can be thought of as falling within the conceptual model of data processing.
This includes simple data transformations, such as compression or encryption,
or more complicated scenarios, such as multi-part queries and in general the
transformation of raw data into information or knowledge. A major aspect of
this NextGRID functional system is the description of data through various types
of metadata. Abstractly, data processing can be described as the movement of
data in meaning.

3.2.4 Data Storage. As data and information are generated on a Grid,
the issue of data storage must be addressed. Storage in the context of Grids
has a wider remit than in conventional contexts. The need for replica man-
agement, distributed coherency, pre-processing to reduce transfer bandwidth
requirements, and security and integrity constraints all add up to create a more
complex problem. Abstractly, data storage can be described as the movement
of data in time.

3.3 Orchestration Systems
Orchestration systems manage the dynamic composition of services in the

NextGRID architecture. Dynamic composition of NextGRID services is facili-
tated by orchestration systems ranging from simple service invocators, through
to complex workflow processing engines. The work on this aspect of the decom-
position of NextGRID is just beginning to have an impact on the architecture,
and few details are available at this stage.

Acknowledgments
The work presented in this paper is the result of the efforts of the NextGRID

project consortium. The efforts of all consortium members involved in this
work is duly acknowledged.

This work has been supported by the NextGRID project and has been funded
by the European Commission’s IST activity of the 6th Framework Programme
under contract number 511563. This paper expresses the opinions of the authors
and not necessarily those of the European Commission. The European Com-
mission is not liable for any use that may be made of the information contained
in this paper.

NextGRID Architectural Concepts 13

References
[1] W3C, Web Services Addressing (WS-Addressing), August 2004:

http://www.w3.org/Submission/ws-addressing/

[2] The Handle System: http://www.handle.net/

[3] Andrew Grimshaw and David Snelling, OGSA-Naming Working Group, WS-Naming
Specification (Draft), Open Grid Forum, 4 December 2006.

VIRTUAL DOMAIN SHARING IN E-SCIENCE
BASED ON
USAGE SERVICE LEVEL AGREEMENTS

Cǎtǎlin L. Dumitrescu
CoreGRID Institute on Programming Models
Mathematics and Computer Science Department, The University of Münster, DE
dumitres@uni-muenster.de

Alexandru Iosup, Ozan Sonmez, Hashim Mohamed, and Dick Epema
CoreGRID Institute on Scheduling and Resource Management
Electrical Engineering, Mathematics and Computer Science, Tech. University of Delft, NL
{A.Iosup,O.O.Sonmez,H.H.Mohamed,D.H.J.Epema}@tudelft.nl

Abstract Today’s Grids, Peer-to-Peer infrastructures or any large computing collaborations
are managed as individual virtual domains (VDs) that focus on their specific
problems. However, the research world is starting to shift towards world-wide
collaborations and much bigger problems. For this trend to realize, the already
existing collection of many resources and services needs to be shared across
owning VDs in secure and efficient ways, and at the least administrative costs. In
this paper we identify the requirements for and propose a specific solution based
on usage service level agreements (uSLAs) for this problem of VD sharing.
Further, we propose an integrated architecture that provides uSLA-based access
to resources, supports the recurrent delegation of usage rights, and provides fault-
tolerant resource co-allocation.

Keywords: Resource Management, Virtual Domains, Usage Service Level Agreements

16

1. Introduction
E-Science, defined as large-scale, grand-challenge science carried out through

distributed global collaborations enabled by the Internet and requiring access
to very large scale computing resources [17], is starting to become a common
research paradigm [11, 14]. For this vision to materialize, the already existing
infrastructures and services need to be shared across existing virtual domains
(VDs) in secure and efficient ways, and to be operated at the smallest costs.

Resource owners from multiple VDs, i.e., multi-clusters [6] or computational
Grids [7, 10, 15], pool together more and more resources. VD providers may
be virtual organizations (VOs [9]- if they also own resources), simple collabo-
rations of companies providing outsourcing services, national Grid infrastruc-
tures, groups of scientific laboratories, or universities that provide access to
their resources.

In this paper we address the problem of VD sharing. We first describe the
characteristics of this problem, and the principles of our usage service level
agreement (or uSLA) based approach. Secondly, we analyze the requirements
of any Grid scheduling service to provide uSLAs-based support for intra- and
inter-VD sharing. Further, we propose an integrated architecture that addresses
the identified requirements, starting from an already existing Grid scheduling
architecture, KOALA [13]. To make the architecture viable in real envi-
ronments, we finally propose specific algorithms for resource brokering and
scheduling, which we compare by means of simulations in several possible
scenarios. We end the paper with our conclusions.

2. Virtual Domain Sharing
In this section we describe our envisaged VD sharing problem, the generic

requirements and a uSLA-based solution for it. We start with a real scenario
stemming from the european Grid community, which will serve as a guide to
the reader’s intuition throughout the rest of the paper.

2.1 Motivating Scenario
Consider the following scenario, in which two large-scale computing in-

frastructures, namely Grid’5000 [2] and the Distributed ASCI Supercomputer
(DAS) [6], are combined into a 3, 000 CPU-strong Grid system:
→ Infrastructure: DAS is a wide-area computer system in the Netherlands
that is used for research on parallel, distributed, and Grid computing. DAS
has been built in three successive waves in the past 10 years, resulting in three
independent sets of resources: the new DAS-3, the production-level DAS-2,
and the somewhat outdated DAS-1. Grid’5000 is the counterpart of DAS in
France, and is currently at its first building wave.

Virtual Domain Sharing in e-Science based on Usage Service Level Agreements 17

→Operation: The resources composing DAS have been provided over time by
more than seven different organizations, and are currently clustered into twelve
sites. However, as one building wave occurs, the previous infrastructure is
declared obsolete, and only the few users with very high computational demands
continue accessing it. Within DAS, resources are shared equally among all the
participating organizations, except for a few agreements: Any application can-
not run for more than 15 minutes from 08:00 to 20:00, and larger projects can
reserve at most 50% of the resources in advance, and use them for periods not
exceeding two weeks. Similarly to DAS, Grid’5000 comprises over ten clusters,
shared equally amongst more than ten organizations.
→ VD Sharing: DAS wants to share its newest component, DAS-3, with
Grid’5000. The sharing mechanism will ensure that the Grid’5000 users do
not get too many resources. In case of usage imbalances, automated actions
specified as penalties, will be enforced until the penalty period expires, or the
administrators cancel it. The Grid’5000 is made available to the DAS users,
under similar restrictions.

Similar situations occur for other large-scale Grid communities that target
collaboration, e.g., the LHC Computing Grid [7] (over 200 sites, over 40,000
CPUs, over 25,000 storage elements with 3 PB storage), NorduGrid [15] (over
20 sites, over 4,000 resources), and OSG/Grid3 [10] (over 3,000 resources).
Also, due to the administrative constraints by allowing a resource allocation
mechanism (i.e., including co-allocation) to operate unrestricted, the system is
exposed to overload from the exterior. A particular problem is that of a large
VD’s load fraction overloading a small VD. Therefore, this work complements
our previous work by introducing a needed mechanism to prevent such events.
Without this extension, co-allocation would not be implementable in practice.

2.2 Problem Overview
The VD sharing problem is expressed as follows: resource providers (univer-

sities, national laboratories or VOs) give resource consumers (specific groups
of interests, e.g., scientists from different domains) access to resources of het-
erogeneous nature (e.g., processors, disk space, but also software licenses, ser-
vices, etc.) under specific agreements. We categorize the resource providers as
domains, VDs and VOs. We further categorize the resource consumers as VOs,
groups, and users. A VD (e.g., a Grid system or a Peer-to-Peer infrastructure)
consists of several domains (e.g., institutions or universities). Each domain
clusters resources of a heterogeneous nature; to avoid confusion with the VD,
and to punctuate the single physical location of resources, from hereon we will
use the term site to denote a domain. Within a VD, a multi-level hierarchy of
groups and VOs exists. Users are members of a group within a certain VO, and
may submit jobs to their own site or others.

18

VD

D

User

Scheduler

Broker

Runner

(Service Manager)

uSLAs DB

VD

D

VD

D

VD

D

Virtual Domain Layer

Koala Placement Policies

Koala Claiming Policies

Request

Ext. Virtual Environment

Ext. Virtual Environment

User Request

Request

Execution Environment

Figure 1. The uSLA-based Scheduling Architecture based on the KOALA Scheduler.

2.3 Requirements for Virtual Domain Sharing
In order to foster collaborations among VDs, specific mechanisms must

be designed to allow the provisioning of resources based on pre-negotiated
agreements and local preferences. Important challenges for inter-VD resource
management can arise in practice from the lack of automated mechanisms for
uSLA discovery, publication, from the complexity of the uSLA operations to
be performed (to satisfy the transitive resource delegations), or from the sheer
number of resource providers and consumers involved. To support controlled
VD sharing by means of uSLAs, we identify as mandatory the following key
requirements: (a) uSLA support for situations with and without contention and a
semantic to ensure that both consumers and providers can establish well defined
agreements upon which resources are used; (b) support for uSLA management:
storage, location, enforcement, and translation of transitive uSLAs as needed by
resource management; (c) support for enhanced scheduling algorithms to take
advantage of the uSLAs made available through various means; and (d) tools to
help the consumer make an informed resource selection through uSLA-aware
brokering algorithms.

3. uSLA-based Scheduling and VD Sharing
In this section we present our uSLA-based architecture for inter-VD sharing.

Koala is implemented as a two layer co-allocation scheduler, and consumer
requests are handled by means of a specialized component, the service manager
or Runner, a controller that ensures the completion of the user’s request.

3.1 Scheduling Architecture and Algorithms
The enhanced architecture is depicted in Figure 1. A runner sends a request

to the Koala’s engine to instantiate on the consumer behalf an execution
environment, in which the user’s request can be run unto completion. The
Koala engine calls the scheduling service, which creates an extended virtual

Virtual Domain Sharing in e-Science based on Usage Service Level Agreements 19

environment, where the user is allowed to run, according to the associated uSLAs
and previous accounting records. The scheduling service can sometimes rely
on a specialized uSLA brokering services for building this extended virtual
environment, like GRUBER [5]. Then, the scheduling service calls the broker-
ing service, and the brokering service verifies the uSLAs, and recommends an
extended virtual environment. After creating this environment, the scheduling
service applies the scheduling policies, filtering the extended virtual environ-
ment until the final execution environment is identified (see Algorithm 1).

Algorithm 1 uSLA-BRKG-A: Brokering algorithm using decayed usage.
Input:

Request← user request;
Threshold← acceptable penalty threshold;
Virtual Domains← list of virtual domains, their parameters, and uSLAs;

Output:
Result← the list of the top-n resources (initially �)

1: for each V Di in Virtual Domains do
2: sort uSLAs by applicability range, into uSLAs-Srt
3: isVDEligible← TRUE
4: for window w in 1..n do
5: compute consumer utilization on V Di

6: while first rule from uSLAs-Srt ∩ window do
7: pop first rule from uSLAs-Srt, as Rule
8: if Request breaks Rule and Rule.Penalty > Threshold then
9: isVDEligible← FALSE

10: if isVDEligible is TRUE then
11: Score← BrokerPolicy (V Di , Request)
12: Result← Result ∪ (V Di , Score)

3.2 The uDecay uSLA
The way udecay is defined is crucial for the behavior of KOALA [12]. In

practice, the most encountered decay function is Fj = k, where k is a constant
factor, e.g., 50%. For a busy system with interactive and batch jobs, a constant
factor close to 1 will enforce lower usage shares for heavy users, effectively
permitting the interactive job users to work. For a lightly loaded system, setting
the decay factor close to 0 will help decrease the decayed utilization rapidly,
which allows the users a new complete allocation of resources. Clearly, a
constant decay factor cannot accommodate systems with high variations in
demand, and various types of users [8].

DU = U0 + U1 · F1(S1) + ... + Un ·
n∏

j=1

Fj(Sj) (1)

20

Our operator set is a set of per-window decay functions which map from the
system state to a decay factor for the given window, O = {Fi}, with Fi the
decay function for the ith window. We assume that system utilizations (Si for
the ith window), and consumer utilizations (Ui for the ith window) are available,
as well as the maximum number n of historic usages (windows). With these
notations, the decayed usage is given by Equation 1.

4. Validation Approach, Results and Recommendations
Because the integration work for DAS – Grid’5000 environment is still in

progress, we perform our analysis by means of simulations using GangSim [4].

4.1 Scenarios and uSLAs
The experimental setup follows a common workload in e-Science settings:

the execution of many instances of BLAST, a bio-informatics application. We
consider a slighlty larger environment than the one exemplified in Section 2.
Three consumers each submit a workload to five VDs. The four uSLAs con-
sidered for comparison are [3, 8]:
→ no-limit uSLA (no-limit) is a statement that specifies no limit. Resources
are acquired on a first come first executed basis [3];
→commitment-limit uSLA (commitment): specifies two upper limits, an
epoch limit Repoch and a burst limit Rburst, and requires intervals, Tepoch and
Tburst. A job is admitted if (a) the average resource utilization for its VO is less
than the corresponding Repoch over Tepoch, and (b) there are idle nodes and the
average resource utilization for the VO is less than Rburst over Tburst [3];
→ time-decay uSLA (decay) is a statement that specifies a single limit instead
and a decay function for each time interval in the past [12].
→ usage-decay uSLA (udecay) is the uSLA introduced in Section 3.1.

4.2 Workloads
The employed workloads arrive at the external schedulers under a Poisson

distribution; the job lengths are sampled from a Gaussian distribution with an
average of 300s; the input files have size between 1kb and 5kb. In each scenario,
we use two types of aggregated workloads. The first type is synchronous:
all consumers submit their jobs in the same time. For the second type, un-
synchronous, consumers submit their jobs at different time moments. The
simulation interval is 1h in all cases, while the scheduling strategies at both the
VO and site levels are FCFS. The VO workloads and allocations are:
→ Balanced Workloads and Equal Allocations Scenario: workloads are
composed of 400, 600 and 500 jobs. The rules under which domains share
their resources are 30%, 30%, and 30%, with burst limits of 60%, 60%, and
50% in the commitment uSLA case. The udecay parameters are 1, 0.5, 0.2, 0.1,

Virtual Domain Sharing in e-Science based on Usage Service Level Agreements 21

and 0.0 for 100%, 50%, 20%, 10%, and 0% utilizations, while the time decay
parameters are set to 1, 0.5, 0.2, and 0.1;
→Un-Balanced Workloads and Equal Allocations Scenario: For the second
scenario, we use three workloads composed of 160, 800, and 400 jobs; the
uSLAs and decay parameters are similar to the previous scenario;
→ Balanced Workloads and Un-Equal Allocations Scenario: For the last
scenario, workloads and decay parameters are as for the first scenario, with
400, 600, and 500 jobs per workload, but resources are shared under different
allocations, namely, 20%, 40%, and 30% and burst allocations of 30%, 60%,
and 50% for the commitment uSLA.

4.3 Performance Metrics
The performance metrics considered for analysis are [3–4]:

→ Aggregated resource utilization (Util): represents the ratio of the CPU
time actually consumed by the N jobs executed during the period considered
to the total CPU time available.
→ Total job completion per site, VO or overall (Comp): measures the total
number of jobs from a given set that are completed.
→ Average Grid response time (Response): is computed as the average time
per job that elapses from job submission to an external queue until startup;
→ Average starvation factor (Starv): represents the ratio of the resources
requested and available, but not provided to a user, to the resources consumed
by the user (ETi), where i represents a site index. Its equation is:

Starv =
N∑

i=1

min(STi, RTi)/
N∑

i=1

ETi (2)

→ uSLA violation ratio (Violation): represents the ratio of CPU consumed by
users (BETi) to the total CPU power. The formula for this quantity is:

Violation =
N∑

i=1

BETi/(# of cpus ∗ ∆t) (3)

4.4 Simulation Results
In this section we present our simulation results for four uSLA, two workload

types, and three parameter variations.
Balanced Workloads and Equal Allocations Scenario: Tables 1 and 2

capture the five performance metric values for the four uSLAs. The udecay
uSLA offers the best overall performance. It is the second best in terms of total
system utilization, but the difference between no-limit and udecay is minimal.
This difference is explained by the balancing introduced by udecay compared

22

uSLA / Metric Util (%) Comp (%) Response Starv (%) Violation (%)
no-limit 90.16 93.57 252.49 13.14 –
commitment 88.22 91.71 233.89 11.83 24.00
decay 79.62 84.28 263.81 15.15 26.63
udecay 89.55 92.07 218.16 10.65 22.60

Table 1. Results for Equal Allocations and Balanced Synchronized Workloads

uSLA / Metric Util (%) Comp (%) Response Starv (%) Violation (%)
no-limit 87.62 90.71 226.91 13.08 –
commitment 83.75 87.78 248.33 12.17 24.27
decay 79.56 82.14 256.94 14.18 25.79
udecay 85.61 88.21 238.94 11.09 22.70

Table 2. Results for Equal Allocations and Balanced Un-Synchronized Workloads

uSLA / Metric Util (%) Comp (%) Response Starv (%) Violation (%)
no-limit 86.26 93.14 225.10 11.03 –
commitment 70.65 76.5 244.54 17.66 27.33
decay 73.06 80.34 246.17 14.34 25.09
udecay 79.64 89.35 226.03 9.66 20.97

Table 3. Results for Equal Allocations and Un-Balanced Synchronized Workloads

to the no-limit one. We must also note in the udecay case the low value for
the Starv factor, which indicates that jobs entitled to run acquire fast enough
allocated resources.

Un-Balanced Workloads and Equal Allocations Scenario: For this sce-
nario, Tables 3 and 4 capture the five metric values for the four uSLAs. The
udecay outperforms the commitment and decay uSLAs in terms of all metrics.
It is the second best in terms of the total system utilization, while the difference
with the no-limit uSLA is again minimal.

Balanced Workloads and Un-Equal Allocations Scenario: Tables 5 and 6
capture the five metric values. The udecay does not perform as well as before,

uSLA / Metric Util (%) Comp (%) Response Starv (%) Violation (%)
no-limit 81.90 92.5 196.35 10.83 –
commitment 66.47 82.07 314.08 19.28 28.57
decay 79.90 89.92 215.60 9.44 20.28
udecay 78.95 91.42 226.37 8.74 19.74

Table 4. Results for Equal Allocations and Un-Balanced Un-Synchronized Workloads

Virtual Domain Sharing in e-Science based on Usage Service Level Agreements 23

uSLA / Metric Util (%) Comp (%) Response Starv (%) Violation (%)
no-limit 90.16 93.57 252.49 13.14 –
commitment 79.58 79.04 298.56 18.50 29.00
decay 72.98 74.16 241.14 16.87 27.96
udecay 84.82 86.21 239.06 10.97 22.39

Table 5. Results for Un-Equal Allocations and Balanced Synchronized Workloads

uSLA / Metric Util (%) Comp (%) Response Starv (%) Violation (%)
no-limit 87.62 90.71 226.91 13.08 –
commitment 74.84 78.28 300.56 19.61 29.91
decay 73.62 74.25 239.18 15.39 11.17
udecay 84.32 89.12 235.49 11.17 22.73

Table 6. Results for Un-Equal Allocations and Balanced Un-Synchronized Workloads

Param. / Metric Util (%) Comp (%) Response Starv (%) Violation (%)
Slow (.8, .5, .2, .1) 82.51 85.78 285.12 5.09 15.79
Medium (.5, .2, .1) 85.61 88.21 238.94 11.09 22.70
Fast (.2,.1) 87.67 89.5 193.99 12.05 23.51

Table 7. Results for Different Decay Parameters

but still offers the best performance in terms of Starv and Violation metrics.
The udecay performs better in terms of Response metric and the motivation is
the un-balance of workloads which makes the historical share to be forgotten
before a new wave of jobs start.

The Influence of Decay Parameters: The last set of simulations compares
the performance of different decay functions for the udecay uSLA. Our results
are captured in Table 7. As can be observed, for the set of high decay values
fewer resources are obtained by all consumers, thus the lowest values (first
columns). However, the Starv and Violation metrics are lower due to the free
resources always available for the slow starters.

4.5 Lessons and Recommendations
Controlled resource sharing within very large environments is difficult in

practice, due to the number and the complexity of participants, their local pref-
erences and software. We believe that uSLA-based resource sharing provides
a strong starting point for building environments in which resources are shared
under owner preferences. While the uSLAs proposed in this paper are compre-
hensive, we expect that in the near future new semantics will be required for

24

other integration efforst. Economy-based sharing models represent an alterna-
tive to be considered for augmenting or replacing uSLA-based sharing.

5. Related Work
Current solutions for controlling resource access in large scale distributed

systems focus extensively on enabling resource sharing among a virtual envi-
ronment participants [3, 16].

Scheduling in Parallel for Heterogeneous Independent NetworXs (SPHINX)
[16] is our first example of a framework for policy-based scheduling of Grid-
enabled only resources. The framework has three main features. First, the
scheduling strategy can control the request assignment to Grid resources by
adjusting resource usage accounts or request priorities. Second, resource usage
management is achieved by assigning usage quotas to intended users. Third,
the scheduling method supports reservation based resource allocation and QoS.

Grid Service Broker [1], a part of GridBus project, mediates instead access
to distributed resources by (a) discovering suitable data sources for a given
analysis scenario, (b) suitable computational resources, (c) optimally mapping
analysis jobs to resources, (d) deploying and monitoring job execution on se-
lected resources, and (e) accessing data from remote source during execution.

The last work we mention here is GRUBER [5], a uSLA-based broker, aimed
at addressing the challenging issues that can arise within VDs that integrate par-
ticipants and resources spanning multiple administrative domains. GRUBER
represents the closest work to our proposed architecture.

6. Summary and Conclusions
Our intra- and inter-domain sharing mechanisms are based on uSLAs that

permit consumers to use resources up to specified levels, for specified peri-
ods of time. Based on resource usage patterns encountered in real large-scale
environments, we employ a generic, load-dependent mechanism for accounting
resource consumption, i.e., the decay-based mechanism. Our proposed uSLA-
based architecture manages the definition, storage, location, and enforcement
of uSLAs, and offers support for the recurrent delegation of resource usage
rights amongst parties. Being based on a proved Grid scheduling infrastruc-
ture, the Koala Grid scheduler, our architecture provides fault-tolerant re-
source co-allocation. The architecture includes two uSLA-based components
for resource management and for user decision support, which also employ the
udecay-based mechanism: a scheduler and a broker.

References

[1] R. Buyya and S. Venugopal. The GridBus Toolkit for Service Oriented Grid and Utility
Computing: An Overview and Status Report. In Proceedings of the 1st IEEE International

Virtual Domain Sharing in e-Science based on Usage Service Level Agreements 25

Workshop on Grid Economics and Business Models (GECON’04), 2004.

[2] F. Cappello et al. Grid’5000: A Large Scale, Reconfigurable, Controlable and Monitorable
Grid Platform. In Proceedings of the 6th IEEE/ACM International Workshop on Grid
Computing (GRID’05), 2005.

[3] C. Dumitrescu and I. Foster. Usage Policy based Scheduling in Virtual Organizations. In
GRID ’04: Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing
(GRID’04), pages 289–296, Pittsburgh, PA, USA, 2004. IEEE Computer Society.

[4] C. Dumitrescu and I. Foster. GangSim: A Simulator for Grid Scheduling Studies. In
Cluster Computing and Grid (CCGrid’05), Cardiff, UK, 2005.

[5] C. Dumitrescu and I. Foster. GRUBER: A Grid Resource Usage SLA BrokER. In Proc.
of 11th International Euro-Par Conference (Euro-Par’05), Portugal, 2005.

[6] Dutch University Backbone. The distributed ASCI supercomputer (DAS-2),
http://www.cs.vu.nl/das2, 2006.

[7] EGEE Team. LCG (URL: http://lcg.web.cern.ch/LCG/), 2004.

[8] D. H. J. Epema. Decay-usage scheduling in multiprocessors. ACM Transactions on
Computing Systems, 16(4):367–415, 1998.

[9] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling Scalable
Virtual Organizations. Lecture Notes in Computer Science, 2150:200–222, 2001.

[10] I. Foster et al. The Grid2003 Production Grid: Principles and Practice. In Proceedings
of the 13th IEEE International Symposium on High Performance Distributed Computing
(HPDC-13 ’04), Hawai, 2004.

[11] A. J. G. Hey and G. Fox. Special Issue: Grids and Web Services for e-Science. Concurrency
- Practice and Experience, 17(2-4):317–322, 2005.

[12] MAUI Scheduler, http://www.clusterresources.com/pages/products, Last accessed: 2006.

[13] H. Mohamed and D. Epema. The Design and Implementation of the KOALA Co-
Allocating Grid Scheduler. In Proceedings of the European Grid Conference, Amsterdam,
volume 3470 of LNCS, pages 640–650, 2005.

[14] H. Newman, M. H. Ellisman, and J. A. Orcutt. Data-intensive e-Science Frontier Research.
Commun. ACM, 46(11):68–77, 2003.

[15] NorduGrid Collaboration. Solution for Wide Area Computing and Data Handling, 2006.

[16] J. uk In, P. Avery, R. Cavanaugh, L. Chitnis, M. Kulkarni, and S. Ranka. SPHINX: A Fault-
Tolerant System for Scheduling in Dynamic Grid Environments. International Parallel
and Distributed Processing Symposium (IPDPS), 01:12b, 2005.

[17] United Kingdom Research Councils. (URL: http://www.rcuk.ac.uk/escience/), 2007.

OPTIMAL CLOSEST POLICY WITH QOS
AND BANDWIDTH CONSTRAINTS FOR
PLACING REPLICAS IN TREE NETWORKS

Veronika Rehn-Sonigo
École Normale Supérieure de Lyon
LIP, UMR CNRS-INRIA-UCBL 5668
Lyon, France
vrehn@ens-lyon.fr

Abstract This paper deals with the replica placement problem on fully homogeneous tree
networks known as theReplica Placementoptimization problem. The client
requests are known beforehand, while the number and location of the servers are
to be determined. We investigate the latter problem using the Closest access
policy when adding QoS and bandwidth constraints.

In this paper, we state that the extension of Closest/Homogeneous with QoS
to bandwidth keeps polynomial. This is an important cognition, as the postulated
constraints are of different nature. QoS is a constraint that belongs to a node
locally, whereas bandwidth constraints have a global influence on the resources.
We propose an optimal algorithm in two passes using dynamic programming.

Keywords: Replica placement, tree networks, Closest policy, quality of service, bandwidth
constraints.

28

1. Introduction
This paper deals with the problem of replica placement in tree networks with

Quality of Service (QoS) guarantees and bandwidth constraints. Informally,
there are clients issuing several requests per time-unit, to be satisfied by servers
with a given QoS and respecting the bandwidth limits of the interconnection
links. The clients are known (both their position in the tree and their number
of requests), while the number and location of the servers are to be determined.
A client is a leaf node of the tree, and its requests can be served by one or
several internal nodes. Initially, there are no replicas; when a node is equipped
with a replica, it can process a number of requests, up to its capacity limit
(number of requests served by time-unit). Nodes equipped with a replica, also
called servers, can only serve clients located in their subtree (so that the root, if
equipped with a replica, can serve any client); this restriction is usually adopted
to enforce the hierarchical nature of the target application platforms, where a
node has knowledge only of its parent and children in the tree. Every client has
some QoS constraints: its requests must be served within a limited time, and
thus the servers handling these requests must not be too far from the client.

The rule of the game is to assign replicas to internal nodes so that some
optimization function is minimized and QoS as well as bandwidth constraints
are respected. Typically, this optimization function is the total utilization cost
of the servers. We restrict the problem to the most popular access policy called
Closest, where each client is allowed to be served only by the closest replica in
the path from itself up to the root.

In this paper we study this optimization problem, called Replica Place-

ment, and we restrict the QoS in terms of number of hops. This means for
instance that the requests of a client who has a QoS range of 5 must be treated
by one of the first five internal nodes on the path from the client up to the tree
root.

We point out that the distribution tree (clients and internal nodes) is fixed
in our approach. This key assumption is quite natural for a broad spectrum of
applications, such as electronic, ISP, or VOD service delivery. The root server
has the original copy of the database but cannot serve all clients directly, so a
distribution tree is deployed to provide a hierarchical and distributed access to
replicas of the original data.

In this paper we propose an efficient algorithm called Optimal Replica
Placement (ORP) to determine optimal locations for placing replicas in the
Replica Placement problem including QoS and bandwidth. Our work
provides an extension of the algorithm of Lin et al [6], which was already
mentioned above. Lin et al [6]proposed an algorithm Place-replica to find
an optimal set of replicas on homogeneous data grid trees including QoS con-
straints in terms of distance but without bandwidth constraints. Our approach

Optimal Closest Policy with QoS and Bandwidth Constraints 29

leads to two extensions. First of all, we separate the set of clients from the
set of servers. Lin et al also suppose clients to be leaf nodes, but with the
double functionality of a server and client. Our separation allows that client
nodes do not have to offer the possibility to place replicas on them, which de-
mands less assumptions on leaf nodes. However our model can simulate the
latter model while the converse is not true. Indeed, we can model client-server
nodes by inserting a fictive node before the client which can take the role of
a server. The approach of Lin et al in contrast does not offer the possibility
to model clients without server functionality. Our second contribution is the
introduction of bandwidth constraints. This is an important modification of the
requirements as QoS and bandwidth are of a completely different nature. QoS
is a constraint that belongs to a node locally, hence each client has to cope with
its own limitation. Bandwidth constraints in contrast have a global influence on
the resources as a link may be shared by multiple clients and consequently all
of them are concerned. Therefore it is not obvious whether the problem with
these completely different constraint types would remain polynomial or would
become NP-hard.

The rest of the paper is organized as follows. Section 2 introduces our main
notations used in Replica Placement problems. Section 3 is dedicated to
the presentation of our polynomial algorithm: the proper terminology of the
algorithm is introduced in Section 3.1. The subsections 3.2 and 3.3 treat the
different phases. Some related work can be found in Section 4. Complexity and
optimality are subject of Section 3.4. Section 5 finally summarizes our work.

2. Notations
This section familiarizes with our basic notations. We consider a distribution

tree T whose nodes are partitioned into a set of clients C and a set of internal
nodes N (N ∩ C = ∅). The clients are leaf nodes of the tree, while N is the set
of internal nodes. Let r be the root of the tree. The set of tree edges (links)
is denoted as L. Each link l owns a bandwidth limit BW(l) that can not be
exceeded. A client v ∈ C is making w(v) requests per time unit to a database.
Each client has to respect its personal Quality of Service constraints (QoS),
where q(v) indicates the range limit in hops for v upwards to the root until
a database replica has to be reached. A node j ∈ N may or may not have
been provided with a replica of the database. Nodes equipped with a replica
(i.e. servers) can process up to W requests per time unit from clients in their
subtree. In other words, there is a unique path from a client v to the root of the
tree, and each node in this path is eligible to process all the requests issued by
v when provided with a replica. We denote by R ⊆ N the entire set of nodes
equipped with a replica.

30

r

r+

0

T

(a) Appearance of T ∗

v1 vj

v

w(v1) w(vj) w(vn)
q(v1) q(vj) q(vn)

vn

(b) Node v before ...

v

w(v) =
∑

1≤j≤n
w(vj)

(min1≤j≤n q(vj)) − 1

(c) ... and after suppression.

Figure 1. Transformations.

3. Optimal Replica Placement Algorithm (ORP)
In this section we present ORP, an algorithm to solve the Replica Place-

ment problem using the Closest policy with QoS and bandwidth constraints.
For this purpose, we modify an algorithm of Lin, Liu and Wu [6]. Their algo-
rithm Place-replica is used on homogeneous conditions with QoS constraints
but without bandwidth restrictions. Hence to be able to use the algorithm, we
have to modify the original platform. We transform the tree T in a tree T ∗ by
adding a new root r+ as father of the original root r (see Figure 1(a)). r+ is
connected to r via a link l0, where BW(l0) = 0. As the bandwidth is limited to
0, no requests can pass above r, so that this artificial transformation for compu-
tation purposes can be adapted to any tree-network. We make this changing to
be able to model whether the original root r is equipped with a replica or not.

A further, only formal transformation, consists in the suppression of clients
from the tree and hence the consideration of their parents as leaves in the follow-
ing way: for every parent p who has only leaf-children v1, .., vn, we assign the
sum of the requests of the vj as its requests w(p), i.e., w(p) =

∑
1≤j≤n w(vj).

The associated QoS is set to (min1≤j≤n q(vj))−1. (Figures 1(b) and 1(c) give
an illustration). This transformation is possible, as we use the Closest policy and
hence all children have to be treated by the same server. From those parents who
have some leaf-children v1, .., vn, but also non-leaf children vn+1, .., vm, the
clients can not be suppressed completely. In this case the leaf-children v1, .., vn

are compressed to one single client c with requests w(c) =
∑

1≤j≤n w(vj) and
QoS q(c) = min1≤j≤n q(vj). Once again this compression is possible due to
the restriction on the Closest access policy.

ORP works in two phases. In the first phase so called Contribution Functions
are computed which will serve in the second phase to determine the optimal
replica placements. In the following some new terms are introduced and then
the two phases are described in detail.

Optimal Closest Policy with QoS and Bandwidth Constraints 31

3.1 Terminology
Working with a tree T ∗ with root r+, we note t(v) the subtree rooted by node

v, and t′(v) = t(v) − v, i.e. the forest of trees rooted at v’s children. The i’th
ancestor of node v, traversing the tree up to the root, is denoted by a(v, i).

Using these notations, we denote m(T ∗) the minimum cardinality set of
replicas that has to be placed in tree T such that all requests can be treated
by a maximum processing capacity of W (respecting QoS and bandwidth con-
straints). In the same manner m(t(v)) denotes the minimum number of replicas
that has to be placed in t′(v), such that the remaining requests on node v are
within W . For this purpose we define a contribution function C. C(v, i) de-
notes the minimum number of requests on node a(v, i) contributed by t(v) by
placing m(t(v)) replicas in t′(v) and none on a(v, j) for 0 ≤ j < i. The
computation is presented below (Cf. Section 3.2). But before we need a last
notation. The set e(v, i) denotes the children of node v that have to be equipped
with a replica such that the remaining requests on node a(v, i) are within W ,
there are exactly m(t(v)) replicas in t′(v) and none on a(v, j) for 0 ≤ j < i
and the contribution t(v) on a(v, i) is minimized. The computation formula is
also given below.

3.2 Phase 1: Bottom up computation of set e, amount
m and contribution function C

The computation of e, m and C is a bottom up process, distinguishing two
cases.

1. v is a leaf. In this case we do not need e and m and we can directly
compute the contribution function. C(v, i) is w(v) when (i ≤ q(v) ∧ w(v) ≤
minBW path[v → a(v, i)]), and infinity otherwise.

We point out that there is no solution if any of the leaves has more requests
than W or if the bandwidth of any of the clients to its parent is not sufficiently
high.

2. v is an internal node with children v1, . . . , vn.
i = 0: If the contribution on v of its children, i.e. the incoming requests on
v is bigger than the processing capacity of inner nodes W , we know we have
to place some replicas on the children to bound the incoming requests on W .
To find out which children have to be equipped with a replica, we take a look
at the C(vj , 1)-values of the children. The set e(v, 0) is used to store the vj’s
that are determined to be equipped with a replica. Hence the procedure is the
following:

e(v, 0) = ∅
while

∑
vj /∈e(v,0) C(vj , 1) > W do

32

add vj ∈ N with biggest C(vj , 1) to e(v, 0)
Note that the set N used in the procedure still corresponds to the set of internal
nodes of the original tree T . So we can add leaf nodes of T ∗ that are inner
nodes in T , but we can not add compressed client nodes. Note furthermore that
there is no client that is added to e(v, 0). Besides we remark that there is no
valid solution within W and the present QoS and bandwidth constraints, when
all children vj ∈ N of v are equipped with a replica and the incoming requests
do not fit in W . Of course this holds also true in the case i > 0. Subsequently,
the value of m(t(v)) is determined easily: m(t(v)) =

∑
1≤j≤n m(t(vj)) +

|e(v, 0)|. We remind that m(t(v)) indicates the minimum number of replicas
that have to be placed in t′(v) to keep the number of contributed requests
inferior to W . Finally, the computation of the contribution function : C(v, 0) =∑

vj /∈e(v,0) C(vj , 1).
i > 0: Treating node v, we want to compute the contribution on a(v, i). As for
i = 0, we start computing the set e(v, i):

e(v, i) = ∅
while

∑
vj /∈e(v,i) C(vj , i + 1) > W do

add vj ∈ N with biggest C(vj , i + 1) to e(v, i)
The computation of the contribution function follows a similar principle:

C(v, i) =

{∑
vj /∈e(v,i) C(vj , i + 1), if |e(v, i)| = |e(v, 0)|

∞, otherwise
(1)

C(v, i) is set to∞, when the number of |e(v, 0)| replicas placed among the chil-
dren of v is not sufficient to keep the contributed requests on a(v, i) within W .

Example of Phase 1. Consider the tree in Figure 2 and a processing capacity
of inner nodes fixed to W = 15. The tree has already been transformed. So
nodes x and y are compressed client-leaves (grey scaled in the figure), whereas
all other leaves correspond to servers (former inner nodes, hence nodes that are
within N). We start with the computation of all C(v, i)-values of all leaves.
Leaf l for example has C(l, 0) = 3 as it holds 3 requests. As the link from l to
e has a bandwidth of 4, and the QoS is 2, the requests of l can ascent to node e
and hence the contribution of l’s requests on node e, C(l, 1), is 3. In the same
manner, C(l, 2), i.e. the contribution of l’s requests on node b is 3 as well. But
then the QoS range is exceeded and hence the requests of l can not be treated
higher in the tree. Consequently the contributions on nodes a and a+ (C(l, 3)
and C(l, 4)) are set to infinity.

Table 2 is used for the computation of e, m and C values of inner nodes.
During the computation process it is filled by main columns, where one main
column consists of all inner nodes of the same level in the tree. So we start

Optimal Closest Policy with QoS and Bandwidth Constraints 33

ih

m n

g

a+

a

c

x y

b

e f

l

bandwidth

d

j k

po

7864

2 5

0

15

6965 10

4

4 5

4

3

83

203

12

20 2

3

4 12

5q=3q=2

q=1q=4

q=3

q=2

q=1 q=2q=3

q=4q=3

Figure 2. Example

Table 1. Computation of C(v, i)-values of leaves.

l f x m n h i o p k y

C(v, 0) 3 4 3 2 5 8 7 4 12 3 8
C(v, 1) 3 4 3 2 5 8 ∞ 4 12 ∞ 8
C(v, 2) 3 ∞ ∞ 2 ∞ 8 ∞ 4 12 ∞ 8
C(v, 3) ∞ ∞ ∞ 2 ∞ ∞ ∞ 4 12 ∞ ∞
C(v, 4) ∞ ∞ ∞ ∞ ∞

with node e. The contribution of its child l, C(l, 1), is 3. As it is the only
child, we have that the contributed requests on e are less than the processing
capacity W = 15 and hence we do not need to place a replica on its child l.
Corresponding we get m(t(e)) = 0 and a contribution C(e, 0) = 3. e(e, 1)
and C(e, 1) are computed in the same manner, taking into account C(l, 2).
Computing e(e, 2), i.e. the nodes that have to be equipped with a replica if we
want to minimize the contribution on node a(e, 2) = a by placing replicas on
the children of e but none on e up to a. For this purpose we use C(l, 3), the
contribution of l on a and remark that it is infinity. Hence we have to equip l
with a replica, and as now the set e(e, 2) has a higher cardinality than e(e, 0),
we know that this solution is not optimal anymore and we set the contribution of
C(e, 2) to infinity (Eq. 1). Taking a look at node j: In the computation of e(j, 0),
we have a total contribution of its children of 16, which exceeds the processing
power of W = 15 (bandwidth and QoS are not restricting here). Indeed we
have to equip one of the children with a replica, and we choose the one with
the highest contribution on j: node p. Consequently, we get m(t(j)) = 1 as
we have to place one replica on the children. The contribution C(j, 0) consists
in the 4 remaining contributed requests of node o. Once we have finished all
computations for this level, we start with the computations of the next level,
which can be found in the next main column of the table.

34

Table 2. Computation of e, m and C for internal nodes.

e g j b c d a a+

e(v, 0) ∅ ∅ {p} ∅ {g, i} {k} {b, c} {a}
m(t(v)) 0 0 1 0 2 2 6 7
C(v, 0) 3 7 4 9 11 12 12 ∞

e(v, 1) ∅ {n} {p} {e} {g, i} {k} {b, c, d}
C(v, 1) 3 ∞ 4 ∞ ∞ 12 ∞

e(v, 2) {l} {n} {p} {e, f} {g, i} {j, k}
C(v, 1) ∞ ∞ 4 ∞ ∞ ∞

e(v, 3) {l} {m, n} {o, p}
C(v, 1) ∞ ∞ ∞

3.3 Phase 2: Top down replica placement
The second phase uses the precomputed results of the first phase to decide

about the nodes on which to place a replica. The goal is to place m(T ∗) =
m(t(r+)) replicas in t′(r+). Note that this means that there is no replica on r+

and hence only the original tree T will be equipped with replicas. If the number
of contributed requests on node r is within W , we have a feasible solution.

Phase 2 is a recursive approach. Starting with i = 0 on node v = r+,
all nodes that are within e(v, i) are equipped with a replica. In this top down
approach, i indicates the distance of node v to its first ancestor up in the tree that
is equipped with a replica and hence the set e(v, i) denotes the set of children of
v that have to be equipped with a replica in order to minimize the contribution
of v on a(v, i). Next the procedure is called recursively with the appropriate
index i. Algorithm 2 gives the pseudo-code for the top down placement phase,
which is the same as the one in [6].

Algorithm 2 Top down replica placement
procedure Place-replica (v, i)
if v ∈ C then

return
place a replica at each node of e(v, i)
for all c ∈ children(v) do

if c ∈ e(v, i) then
Place-replica(c,0)

else
Place-replica(c, i+1)

Optimal Closest Policy with QoS and Bandwidth Constraints 35

3.4 Complexity and Optimality
Due to lack of space, we discuss only sketchy complexity and optimality. A

detailed disquisition with proofs can be found in our research report [7]. We
state a total complexity of LN log N , where N is the number of nodes in the
tree and L the maximum range limit among all nodes. Optimality is subject of
the following theorem:

Theorem 1. Algorithm ORP returns an optimal solution to the Replica

Placement problem with fixed W , QoS and bandwidth constraints, if there
exists a solution.

To prove optimality we perform an induction over levels, where we transform
an optimal solution R0 in the solution found by Algorithm ORP. We consider
any tree T ∗ of hight n + 1 and start at level 0, which consists in the artificial
root r+. At each step i of the induction we change the placement of the replicas
in the i-th level of the solution Ri such that the new placement corresponds to
the solution of ORP. We prove then that this new solution Ri+1 is still optimal.

4. Related work
Many authors deal with the Replica Placement optimization problem.

Most of the papers neither deal with QoS nor with bandwidth constraints. In-
stead they consider average system performance as total communication cost
or total accessing cost. Please refer to [2]for a detailed description of related
work with no QoS constraints.

Cidon et al [3]studied an instance of Replica Placement with multiple
objects, where all requests of a client are served by the closest replica (Closest
policy). In this work, the objective function integrates a communication cost,
which can be seen as a substitute for QoS. Thus, they minimize the average
communication cost for all the clients rather than ensuring a given QoS for
each client. They target fully homogeneous platforms since there are no server
capacity constraints in their approach. A similar instance of the problem has
been studied by Lin et al [6], adding a QoS in terms of a range limit, and whose
objective is to minimize the number of replicas. In this latter approach, the
servers are homogeneous, and their capacity is bounded. Both [3],[6]use a
dynamic programming algorithm to find the optimal solution.

Some of the first authors to introduce actual QoS constraints in the problem
were Tang and Xu [8]. In their approach, the QoS corresponds to the latency
requirements of each client. Different access policies are considered. First, a
replica-aware policy in a general graph with heterogeneous nodes is proven to
be NP-complete. When the clients do not know where the replicas are (replica-
blind policy), the graph is simplified to a tree (fixed routing scheme) with the

36

Closest policy, and in this case again it is possible to find an optimal dynamic
programming algorithm.

Bandwidth limitations are taken into account when Karlsson et al [5],[4] com-
pare different objective functions and several heuristics to solve NP-complete
problem instances. They do not take QoS constraints into account, but instead
integrate a communication cost in the objective function as was done in [3].
Integrating the communication cost into the objective function can be viewed
as a Lagrangian relaxation of QoS constraints. Please refer to [1] for more
related work dealing with QoS constraints.

5. Conclusion
In this paper we dealt with the Replica Placement optimization prob-

lem with QoS and bandwidth constraints. We restricted our research on Clos-
est/Homogeneous instances. We were able to prove polynomiality and proposed
the optimal algorithm ORP. This algorithm extends an existing algorithm in
two important areas. First the set of clients and the set of servers can be dis-
tinct now and does not require exclusively double-functionality nodes anymore.
The other contribution is the expansion to the interplay of different nature con-
straints. QoS, which is a proper constraint for each client, and bandwidth,
a global resource limitation, subordinate to a common optimization function.
This accomplishment completes furthermore the study on complexity of Clos-
est/Homogeneous in tree networks.

References
[1] A. Benoit, V. Rehn, and Y. Robert. Impact of QoS on Replica Placement in Tree Networks.

Research Report 2006-48, LIP, ENS Lyon, France, Dec. 2006. To appear in ICCS’2007.

[2] A. Benoit, V. Rehn, and Y. Robert. Strategies for Replica Placement in Tree Networks. In
HCW’2007. IEEE Computer Society Press, 2007.

[3] I. Cidon, S. Kutten, and R. Soffer. Optimal allocation of electronic content. Computer
Networks, 40(2):205–218, 2002.

[4] M. Karlsson and C. Karamanolis. Choosing Replica Placement Heuristics for Wide-Area
Systems. In ICDCS’04, pages 350–359, Washington, DC, USA, 2004. IEEE Computer
Society.

[5] M. Karlsson, C. Karamanolis, and M. Mahalingam. A Framework for Evaluating Replica
Placement Algorithms. Research Report HPL-2002-219, HP Laboratories, Palo Alto, CA,
2002.

[6] P. Liu, Y.-F. Lin, and J.-J. Wu. Optimal placement of replicas in data grid environments
with locality assurance. In ICPADS. IEEE Computer Society Press, 2006.

[7] V. Rehn. Optimal Closest Policy with QoS and Bandwidth Constraints for Placing Replicas
in Tree Networks. Research Report 2007-10, LIP, ENS Lyon, France, Mar. 2007.

[8] X. Tang and J. Xu. QoS-Aware Replica Placement for Content Distribution. IEEE Trans-
actions on Parallel and Distributed Systems, 16(10):921–932, 2005.

AN OPEN ARCHITECTURE
FOR QOS INFORMATION
IN BUSINESS GRIDS

Konstantinos Tserpes, Dimosthenis Kyriazis,
Andreas Menychtas and Theodora Varvarigou
Dept. of Electrical and Computer Engineering,
National Technical University of Athens
9, Heroon Polytechniou Str, 15773
Athens, Greece
tserpes@telecom.ntua.gr

dkyr@telecom.ntua.gr

a menychtas@telecom.ntua.gr

dora@telecom.ntua.gr

Fabrizio Silvestri and Domenico Laforenza
Institute of Information Science and Technologies,
Italian National Research Council, via G. Moruzzi 1, 56124
PISA, Italy
fabrizio.silvestri@isti.cnr.it

domenico.laforenza@isti.cnr.it

Abstract Grid Computing is now in the state of development that can offer dynamic man-
agement of various parameters that affect the applications’ properties such as
performance and reliability capabilities. The importance of that achievement is
great, given the trend of migrating traditional service markets to inter-enterprise
infrastructures and the resulting demand in more or different guarantees on the
level of the Quality of Service. In that frame, we present a design pattern for
monitoring and evaluating SLA terms on service-oriented architectures. This
mechanism takes into account the actual capabilities of the service provider in-
frastructure and maps them to customer-centric Quality of Service terms, thus
ensuring that agreements will not be validated. In this way it enables the esti-
mation of the actual capability of the service to provide Quality of Service at a
certain degree.

Keywords: Quality of Service, Service Level Agreement, Business Grids, Service Oriented
Architecture

38

1. Introduction
Business environments are heavily relied on Quality of Service (QoS) due to

their commercial nature and the resulting interaction with clients. What makes
a service attractable to customers -if not the nature of the service itself- is its
quality. However, when it comes to IT services, the technology has provided
us the tools for not only provisioning and managing the quality but also for
negotiating upon it. Moreover, in heterogeneous and distributed systems which
are now largely based on Service Oriented Computing (SOC) principles, such
as Open Grid Service Architectures (OGSA [1]), these functionalities make
even more sense, since the quality provisioning capabilities of the services are
so diverse that one could assume that the offered QoS levels are non-discreet.

Eventhough business and in turn, enterprise Grids -which nowadays are de-
ployed upon service infrastructures by default-, have some prototype mech-
anisms to utilize the offered QoS as information, they lack a coherent and
ubiquitous way to quantify and manage this kind of information and in turn,
make use of it. The most important reason for that is the weakness to identify
the source of QoS information and to devise a single way to extract it. It is
unclear of whether it is the service provider or consumer that must define the
QoS level that is going to be provided or consumed. This is largely due to the
confusion that the different representation of quality causes when addressed in
different architecture layers or organizational boundaries. However, the need
for tools to dynamically express QoS requests and provision capabilities, has al-
ready been stated clearly in lots of Grid areas such as Service Level Agreement
(SLA) negotiation.

In this study we attempt to record the approaches taken so far with regard
to the QoS as information in Grid computing (§2), while in §3, we present
our approach. Specifically, we explain the differentiation among quality types
depending on the perspective and we take a first approach to analyze the re-
quirements of the customers that are to be included in SLAs in terms of QoS.
In §4 we present the architectural pattern of a service-oriented module and we
advocate that it is capable to provide QoS information to the service provider
in order to avoid SLA violations and maintain his quality provisioning level.
Finally in §5 we present our conclusions and the open issues that are following
this study.

2. Related Work for QoS in Grids
Extending the Grid infrastructure in a way that can be used in commercial

applications (i.e., to provide guarantees of the negotiated QoS requirements)
necessitates the awareness of QoS information for each of the various layers
of a Grid Middleware in order to determine the overall quality level. Various
assurances are made by Grid environments by the virtue of their establishment.

An Open Architecture for QoS Information in Business Grids 39

These include cases where the consumer is interested for Grid services which are
hosted on “high-end” resources including expensive equipment and data storage
systems, and which are connected via reliable and high-speed networks. More
strong QoS information such as deadline guarantees or advanced reservation of
resources/bandwidth imply also a set of assurances whose information are of
vital importance for the overall provision of quality to the consumer.

There are various approaches that handle QoS in the most known Grid imple-
mentations. The Globus Architecture for Reservation and Allocation (GARA)
[2] addresses QoS at the level of facilitating and providing basic mechanisms for
QoS support, namely resource configuration, discovery, selection, and alloca-
tion. This architecture is particularly aimed at using Globus services to support
allocation of resources, and utilises specialised resource managers (such as a
Diffserv manager) to support admission control and application adaptation at
network edges. Current emphasis has been on supporting request authentication
and authorisation [3]. Condor-G [4] has been extensively used in the Globus
context and provides a substantial instantiation of Globus/GRAM. However,
Condor-G supports only coarse-grained and concrete resource types, is stat-
ically configured and non-extensible, and has serious limitations in terms of
adaptation: all it can do is migrate or restart jobs in the case of failures [5].
Nimrod-G [6] allows the users to lease and aggregate services of resources
depending on their availability, capability, performance, cost, and users’ QoS
requirements. The resource price may vary from time to time and from one
user to another. At runtime, the user can even enter into bidding and nego-
tiate for the best possible cost-effective resources from computational service
providers. The objective of the Libra project is to expand what had been for
Grid computing by Nimrod-G via implementing the Libra scheduler for cluster
computing [7].

3. QoS Provisioning
Next Generation Grid architectures are bound to tackle issues such as the

integration of various business processes in the Grid business logic, the effective
inclusion of SLA negotiations and the service selection process given specific
criteria. All these imply the interference -either in a direct or an indirect way-
of the consumer that must now express his QoS requirements according to his
own quality experience (QoE).

On the other hand, the provider must somehow be aware of details regarding
his quality provisioning capability and in what level he is able to offer them, in
order to utilize and negotiate upon them. These details may include statistical
information about the operation of services and resources, about the capabilities
of the resources, about the billing policy of the service provider and finally about
the quality of the service throughout time.

40

The above statements bring about the distinction between the quality as
perceived by the customer and the provider. The customer assesses quality using
his own experience as a guide, whereas the provider using metrics and low level
information related basically to the infrastructure. These low-level metrics are
deriving from the agreed SLA terms and reflect the way that the provider wants to
monitor, evaluate and in general assess the issue of quality provisioning. Taking
this one step further, one may observe that there are two conceptual entities that
govern this process. The one is the concept of low-level, infrastructure-oriented
parameters which reflect the service provider’s performance capability which
we will call QoS parameters. The other concept is the one of higher-level
parameters that are closer to the customer’s understanding of the QoS and the
application. We will refer to the latter as QoS Indices.

Figure 1. QoS Parameters are crossing Grid Environments from the resources, through the fab-
ric layer, up to the management layer. QoS Indices derive from end-users, across the application
layer and end down to the management layer.

The term QoS parameters is broadly used for these parameters referring both
to the resource and the service instance properties and which are usually prod-
ucts of benchmarking and performance monitoring tools. On the other hand,
QoS indices are commonly used as terms in the SLA contracts and the service
consumer is expected to express his/her demands by assigning respective val-
ues. The reason is that they can be understood by both parties and therefore an
agreement upon specific values can be achieved.

Following that rationale, it is instinctively obvious that there is a correlation
scheme between QoS parameters and indices that help the provider do the
deduction. Furthermore, one can safely assume that this correlation is a one-
to-many relation, in the sense that one QoS index can be mapped to at least
one parameter. This kind of mapping is the result of the mixed influence of the
application type and the business model of the provider.

An Open Architecture for QoS Information in Business Grids 41

On a side note, it is a fact that much of the low-level information contained
in QoS parameters can be extracted easily at real time by various Grid com-
ponents such as monitoring components or even components that model the
resources based on specific attributes (like performance). This kind of compo-
nents are usually using low level modelling specifications and standards such
as the Common Information Model (CIM) [8] in order to provide a generic
modelling method that will be able to be applied to all the resources.

However, there is still more information to be collected and more methods to
be employed in order to reach the point were the QoS will be simply represented
in SLAs as a set of indices. In the examples that the authors studied, SLAs are
static, referring to simple usage metrics that are QoS parameters. The need for
dynamicity and means to describe indices upon which both the customer and
the provider are willing to negotiate is the motivating concept for this research
effort. This work attempts to take this concept closer to the implementation
level and for that reason we studied the case of Business Grids. The goal is to
conclude to an acceptable, desired set of QoS indices. In other words we looked
into the operation of the Business Grid and tried to define what the customer
would require from the Grid and what the service providers could possibly
provide. This information is vital for an SLA document which, as stated in [9],
it should address the following key aspects:

What the provider is promising.

How the provider will deliver on those promises.

Who will measure delivery, and how.

What happens if the provider fails to deliver as promised.

How the SLA will change over time.

According to the above, aspects 1 and 2 are essential to this study. The 1st
point implies the information regarding the QoS provisioning capabilities of a
provider, usually expressed through an SLA template and QoS indices. The
2nd point is related to the QoS parameters and how their values affect the SLA.

Based on the described study, there are 6 major categories of QoS information
that characterize the quality provisioning capabilities of a provider and are
expected to be found in a SLA addressing point 1. These are the following QoS
indices:

Availability information. This is an index deriving from low level infor-
mation related to a service instance. It provides a mean to measure the
availability of the service instance throughout time, like if the required
service is up and running, or if the libraries or binaries exist.

42

Reliability information. Similarly, an index can be created out of these
data. It is an index deriving mostly by the statistical analysis of the
Availability information, since (in simple terms) a service instance is
reliable as long as it is available for a specific time period.

Performance-related details. This is a very complex issue. Several at-
tempts to measure performance have taken place ([10],[11],[12]), how-
ever, they are all based on specific assumptions and are not generic
enough. In that frame, the intention is to provide some abstract perfor-
mance parameters that will contribute in calculating some QoS temporal
parameters, such as usage data, etc. Clearly, these details are affected by
QoS parameters addressing the lower layers of Grid infrastructure, for
example CPU and memory usage.

Cost-related details. This is more related to pricing information regarding
the specific service instance like the billing rate per time periods, etc.

Statistical information on the Quality of the Result. This can be summa-
rized in an index showing the satisfaction level of the user when he/she
received various results through time. This index aims to do be calculated
by the feedback provided back to the service providers by the customer,
if there is any. This is better known as Quality of the customer experience
(QoE) and it is restricted to quality as he perceives it,

Statistical information about SLA violations. A rather interesting piece
of information would include an index showing the rate that which a
service instance is violating the agreed SLA.

In the following section we are presenting the requirements that an architectural
design must meet in order to enable the provisioning of QoS indices associated
to the abovementioned categories.

4. QoS Provision Module
We designed a component in order to describe the functionalities of a mon-

itoring and evaluation system. The principle of this mechanism is to collect,
estimate and provide QoS information to any part of the overall architecture re-
quires it, as long as there is a trusted relationship established amongst them. The
prototypes followed are for an open architecture consistent with the NextGRID
IST [13] components where we defined the minimum set of interactions by
determining the interfaces. This kind of mechanisms are essential to the opera-
tion of service providers in order to maintain operation efforts according to the
signed SLA and in order to be able to trigger policies whenever a violation is
predicted. In simple words, the service provider must monitor QoS parameters

An Open Architecture for QoS Information in Business Grids 43

and then correlate them with the SLA QoS indices, in order to avoid violations
and compensations and also to maintain the desired level of reputation.

The quality of an offered service is spread out to each service instance of
a Grid environment rather than in a service or resource level, as the instance
comprises the actual implementation. Thus, the QoS information must be ex-
tracted by each one of the instances of a service and therefore the design of
the mechanism has to take into account various implementations of the same
service, in different platforms and with different properties. In order to tackle
this problem we proceeded with designing two components, that must be de-
ployed in the provider’s domain, as they will handle information belonging to
the provider and will produce outputs for the provider. We will hereafter call
this mechanism “QoS Information Provisioning Mechanism”. The high level
design of this mechanism is the following:

Figure 2. QoS Information Provision Component Model

As it is depicted in the figure, the mechanism is comprised of two major compo-
nents: the “QoS Information Requester” and the “QoS information Provider”.
The Provider is collecting low level information (QoS parameters) directly from
the service instances by running scripts and benchmarks, in order to monitor
some system metrics, usage or enquire for its current status. It then sends the
extracted and calculated parameters back to the Requester.

The Requester’s job is fourfold:

Trigger the Provider in order to “activate” it for the information gathering
process in real time. This operation must be initiated by sending a mes-
sage indicating the parameters that must be returned upon the completion
of the operation of the Provider,

44

Performing calculations and storing the QoS information in a repository.
All the parameters delivered to the Requester are then processed and a set
of indices are accruing. These indices are forming the QoS information
that will be later delivered to each one who requests it. As mentioned
before these indices include but are not restrained on the availability, reli-
ability, performance and pricing properties of the service instance. Once
these indices are computed, are then stored in the repository. The repos-
itory can be a single database for efficiency purposes but its operation
can be extended to encompass other functionalities of other modules as
well, or vice versa. In that frame, the QoS information provision module
can share the same instances of a repository with a service discovery
component, even using the same naming and addressing schemes.

Handle queries from third parties so as to provide the information back
from the repository. Since, Service Oriented Architectures must remain
open and flexible, the QoS information provision mechanism must permit
other components to access the data if they have the proper access rights
or a certain degree of trust s established in their communication link. A
“history interface” should allow the submission of queries which in turn
the Requester is handling.

Collect information from other SOA components or third parties. Some
parameters required for the calculation of the QoS information indices
can be already found in other components. For instance, information
about SLA violations can be provided by the potential SLA monitoring
mechanisms.

The QoS Information Requester is placed within the provider’s organiza-
tional boundaries in terms of trust, that is, it can be part of or a trusted third
party to the provider. This can maintain the privacy properties for data that the
service provider would like to keep within the VO that it is part of and leave
the task of disseminating this kind of information entirely up to the provider’s
policy. In a similar rationale, the repository must be also part of the service
provider. Of course, from a different perspective both the Repository and the
Requester services can be provided by a trusted third party as services to the
service provider. However, there seems to be no alternatives for the QoS In-
formation Provider (in terms of architecture design), which must be deployed
in each service provider, operating for each service instance, otherwise its ex-
istence is unnecessary (if, for instance the provider is offering the low level
details with owned mechanisms).

The implementation and operation of the QoS-Information Provision Com-
ponent is regulated by the WSRF specifications, that is, the whole environment
is based on Web Services. Thus, starting from the service provider’s side,

An Open Architecture for QoS Information in Business Grids 45

the services are deployed as WS-Resources with their lifetime defined by a
WS-ResourceLifetime [14] whereas the QoS parameters are exposed as re-
source properties through WS-ResourceProperties [15]. The QoS History is a
registry employing WS-Addressing [16] to store the service details and WS-
BaseNotification [17] to propagate the information related to an SLA violation.
The WS-Security [18] context is used for handling the security tokens. Finally,
WSLA [19] can be used for the SLA representation, monitoring and creation,
keeping at the same time in mind that it has not been adopted by any formal,
international Grid forum or Organization.

In detail, the Repository is implemented using an XML database (Oracle
Berkeley DB), whereas its container is based on a custom XML schema that
fits the particular needs. Its operations are exposed through a web service which
provides four interfaces, one for each operation:

Insert, whenever a new QoS index is to be inserted. Along with the value
itself, the requester sends a series of other details in the form of an SOAP
message, such as the URI of the service (which acts as a unique identifier)
and the lifetime of the parameter.

Update, whenever new values need to be added or old to be altered. This is
demanded whenever the requester’s outcome dictates such a change (e.g.
when the lifetime of a value has expired), or the other components (such
as SLA repositories) contribute by sending extra information (e.g. SLA
Violations). A specific placeholder for this has been created, however,
we have left the XML schema for the container open to changes, as new
needs might emerge in the future.

Query, which is used whenever the Requester or a third party uses the
database for retrieving information.

Delete, for deleting records, for instance, whenever a service is removed
from the Virtual Organisation. At this point of time, this process is not
automated, however effort is pulled in order to retrieve information from
a NextGRID Registry [20] as to whether a service is available or not.

The database operations are accessed through other web services using
XQueries. Similarly, the Requester is implemented and exposed as a web ser-
vice over Apache AXIS. It provides interfaces for retrieving the values depicted
in the table below:

For the values above, the respective web service for the QoS Information
Provider, runs simple benchmarking tools. It then sends the values to the
Requester whenever it is invoked for a particular parameter. This is again
achieved through the exchange of SOAP messages. This closes the flow of
actions (in reverse order) that need to be done in order to store and use a QoS
index, starting from low level QoS parameters, extracted by the service itself.

46

Table 1. Categorized QoS parameters that the QoS information provisioning mechanism
monitors.

Category QoS Parameters

CPU Capability
Flops Count/simple BM (linpack)

Kernel Version
Architecture Type

CPU Load
System Load

User Load
I/O Load

Queue info
Policy (how many jobs at a time, max time)

Length (residency times?)
Number of running jobs

Inter-processor connections
BW Between processors in a cluster

Latency between processors in a cluster
MPI messaging

Memory/Cache
Capacity

Disk
Disk bandwidth (bonnie)

Installation
Software and versions
Environment, variables

5. Conclusions
In this work, we provide the architecture which addresses the requirements

of mechanisms that collect and provide in a ubiquitous manner the information
which is related to the capability of a service to provide Quality at a certain level
in a Service Oriented Grid Architecture. Apart from the type of information
that this mechanism is offering to a Grid environment, the differentiation to
other works is mainly concentrated to the fact that components following this
pattern should be able to operate within a competitive business environment,
optionally offering its knowledge to the customers or the providers, depending
on whether the two negotiating parties agree or not.

An Open Architecture for QoS Information in Business Grids 47

The QoS Information Provisioning component, was implemented and used
in the frame of a series of experiments in NextGRID IST and in particular
to the Digital Media application scenario, delivering very good performance.
According to this scenario, an animation designer executes a workflow that leads
to the 3D-rendering of his job. One of the main requirements for this application
is to provide information which is understood to the designer that will enable
him to select the appropriate service that will deliver a result maintaining the
QoS guarantees. This was made feasible by the component, since he could
retrieve information about QoS indices which are customer-centric and that
reflect the actual capability of the provider to deliver QoS and in turn to hold on
his promise. The results were encouraging in terms of usability, as the designer
could retrieve the information he wanted and that could assist his selection
process, however, there is no clear indication that the violations were reduced,
as the reliability of the system is so high even without our component, that it
would require a more pragmatic approach to lead to safe conclusions (e.g. have
a designer use the system for a year or so).

At this point it is important to state, that for the abovementioned experiment
we assumed that the service provider has agreed on providing the customer with
details about its infrastructure. However, this is not the actual case, as even if
these details are mapped to high level parameters, the provider will be reluctant
to expose this kind of information. A metric for the success of the component
is -for example- the reduction of SLA violations in terms expressed as QoS
indices. The service provider can use this information and through reverse
mapping of the QoS indices to QoS parameters to conclude as to whether he
must change the initial offer and thus, the SLA templates.

The main concern for future work is to enable dynamicity in SLA negotiation
by identifying the main categories of high level QoS indices. Current solutions
include SLAs with static terms, usually referring to the usage, which comprise
the QoS parameters. Even this seems to be an efficient way to build a system,
it is problematic because these parameters are hardly understood by a simple
customer and even more, hardly interesting to them. What is needed is mech-
anisms that will be able to easily deployed in every system and to facilitate the
matching between QoS indices and parameters making the negotiating terms
comprehendible to the provider too. The requirements of such a mechanism
are described in this document.

Acknowledgments
The work presented in this paper is the result of the efforts of the NextGRID

project consortium. The effort of all consortium members involved in this work
is duly acknowledged.

48

This work has been supported by the NextGRID project and has been funded
by the European Commission’s IST activity of the 6th Framework Programme
under contract number 511563. This paper expresses the opinions of the authors
and not necessarily those of the European Commission. The European Com-
mission is not liable for any use that may be made of the information contained
in this paper.

References
[1] Open Grid Services Architecture (OGSA), www.ggf.org/documents/GFD.30.pdf
[2] Foster, C. Kesselman, C. Lee, B Lindell, K. Nahrstedt, A. Roy , “A Distributed Resource

Management Architecture that Supports Advance Reservation and Co-Allocation”, Pro-
ceedings of the International Workshop on QoS, pp.27-36, 1999

[3] Al-Ali, R.; Rana, O.; Walker, D.; Jha, S.; Sohail, S. “G-QoSM: Grid Service Discovery
Using QoS Properties.” Computing and Informatics Journal, 21 (4), 2002. 363-82.

[4] Frey, J., Tanenbaum, T., Livny, M., Foster, I., Tuecke,S., “Condor-G: A Computation
Management Agent for Multi-Instructional Grids”, Cluster Computing, Vol 5, pp237-246,
2001

[5] Wei Cai, Geoff Coulson, Paul Grace, Gordon Blair, Laurent Mathy, Wai Kit Yeung, “The
Gridkit Distributed Resource Management Framework”, Proceeding of European Grid
Conference, Science Park Amsterdam, The Netherlands, February 14 -16 2005.

[6] Buyya R, Abramson D, Giddy J. “Nimrod-G: An architecture for a resource management
and scheduling system in a global computational grid.” Proceedings 4th International
Conference and Exhibition on High Performance Computing in Asia-Pacific Region (HPC
ASIA 2000), Beijing, China, 14–17 May 2000. IEEE Computer Society Press: Los Alami-
tos, CA, 2000.

[7] Jahanzeb Sherwani, Nosheen Ali, Nausheen Lotia, Zahra Hayat, and Rajkumar Buyya,
“Libra: A Computational Economy based Job Scheduling System for Clusters”, Interna-
tional Journal of Software: Practice and Experience, Volume 34, Issue 6, Pages: 573-590,
Wiley Press, USA, May 2004

[8] Distributed Management Task Force, Inc., “Common Information Model (CIM) In-
frastructure Specification”, DSP0004, Version 2.3, Final, October 4, 2005

[9] Edward Wustenhoff, Service Level Agreement in the Data Center, Sun Professional Ser-
vices Sun BluePrints™ OnLine - April 200

[10] Ioan Raicu. “A Performance Study of the Globus Toolkit® and Grid Services via DiPerF, an
automated DIstributed PERformance testing Framework”, University of Chicago, Com-
puter Science Department, MS Thesis, May 2005, Chicago, Illinois.

[11] D. Gunter, B. Tierney, C. E. Tull, V. Virmani, “On-Demand Grid Application Tuning and
Debugging with the NetLogger Activation Service”, 4th International Workshop on Grid
Computing, Grid2003, Phoenix, Arizona, November 17th, 2003.

[12] G. Tsouloupas, M. Dikaiakos. “GridBench: A Tool for Benchmarking Grids”, 4th Inter-
national Workshop on Grid Computing, Grid2003, Phoenix, Arizona, November 17th,
2003.

[13] The Next Generation Grid (NEXTGRID), www.nextgrid.org
[14] Web Service Resource Lifetime (WS-ResourceLifetime) v1.2 Specification,

http://docs.oasis-open.org/wsrf/wsrf-ws resource lifetime-1.2-spec-os.pdf

An Open Architecture for QoS Information in Business Grids 49

[15] Web Service Resource Properties (WS-ResourceProperties) v1.2 Specification
http://docs.oasis-open.org/wsrf/wsrf-ws resource properties-1.2-spec-os.pdf

[16] Web Services Addressing (WS-Addressing), http://www.w3.org/Submission/ws-
addressing/

[17] Web Service Base Notification (WS-BaseNotification) v1.2 Specification,
http://docs.oasis-open.org/wsn/2004/06/wsn-WS-BaseNotification-1.2-draft-03.pdf

[18] Web Service Security (WS-Security) Core Specification v1.1,
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-
SOAPMessageSecurity.pdf

[19] H. Ludwig, A. Keller, A. Dan, R. P. King, R. Franck, “Service Level Agreement Language
Specification”, http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf

[20] Peer Hasselmeyer, “Performance Evaluation of a WS Service Group based Registry”,
7th IEEE/ACM International Conference on Grid Computing (Grid 2006), Barcelona,
September 28th-29th, 2006.

II

TRUST, SECURITY AND VIRTUAL
ORGANIZATION

THREAT ANALYSIS AND ATTACKS
ON XTREEMOS: A GRID–ENABLED
OPERATING SYSTEM∗

Amit D. Lakhani, Erica Y. Yang, Brian Matthews, Ian Johnson, Syed Naqvi,
Gheorghe C. Silaghi
Rutherford Appleton Laboratory,
Science and Technology Facilities Council, Didcot,
Oxon, UK
OX11 0QX
a.lakhani, y.yang, b.m.matthews, i.j.johnson, s.naqvi, g.c.silaghi@rl.ac.uk

Abstract We perform a preliminary threat analysis on a grid–enabled operating system,
namely XtreemOS, in this paper. While currently under development, XtreemOS
aims to provide native Virtual Organisation support in a secure and dependable
manner. We investigate security within the XtreemOS architecture by identifying
the security requirements and objectives. Further, we list assets within the sys-
tem that need protection and detail attacks using the attacker tree methodology.
At the end, we describe a specific attack on the overall XtreemOS–supported
architecture using an attacker tree. Analysis of this nature will help in generating
a number of test cases for testing an early prototype of XtreemOS and provide
assurance to the security of the XtreemOS system.

Keywords: XtreemOS, Threats, Attacks, Grid, Threat Analysis, Attacker Tree

∗This work is supported by the European Commission under the IST program #FP6–033576.

54

1. Introduction
Grid Middleware security has been researched extensively in literature

[1, 7, 8, 9]. While various middleware security services have been devel-
oped, the unification and use of such services is left at the discretion of the im-
plementers. We propose to develop a Grid–enabled Operating System, called
XtreemOS [2], which has native support for Virtual Organisations (VOs). In the
context of Grid and Web services, a VO is a static or dynamic group of entities
(organisations, individuals, institutes etc.) that pool resources and use services
to achieve common objectives. Security in XtreemOS is a major concern, and
administrators and users require a high level of assurance in this area. To this
end, we are in the process of developing a secure VO management strategy and
also plan to use evaluation criteria, such as Common Criteria, to inspect the
claimed security provided by XtreemOS.

In this paper, we describe our threat analysis and attacks identified in Xtreem-
OS by understanding the basic threat model in Grid and Web Services architec-
ture. We analyse various attacks possible in such a setting and build attacker
trees to inspect various attacker tools. The benefits of our threat analysis are
manifold. Such attacker trees will generate a number of test cases to test a
working prototype of XtreemOS once developed. Our analysis will also iden-
tify threats, in addition to common threats in Grids and Web services which are
created by XtreemOS. Included in the analysis is the study of risks in designing
such underlying services and a consideration of mechanisms that can be used
to mitigate such risks. While various other research proposals address Grid
Operating Systems [3–4]; to our knowledge, there does not exist any threat
analysis for a Grid-enabled Operating System.

2. Threat Analysis
To carry out a proper threat analysis we first need to define the security

requirements, identify assets and consequently determine threats in the sys-
tem. In the next subsection we start our analysis with security requirements of
XtreemOS.

2.1 Security Requirements and Objectives for XtreemOS
While the exact XtreemOS architecture is still under development, a detailed

description of the overall system and XtreemOS is given in [2].
The basic security objectives of XtreemOS are similar to those applicable to

traditional operating systems, namely confidentiality, integrity and availability.
In addition in the Grid, authentication and authorisation become a prime con-
cern. However, the fulfillment of such objectives become more difficult due to
the distributed nature of the Grid. Of greater importance are synchronisation

Threat Analysis and Attacks on XtreemOS: a Grid–enabled Operating System 55

issues, inconsistencies within which can particularly lead to non–fulfillment of
security objectives. We consider both stored data and data in–transit. The most
important security requirements we consider for our system model are:

Confidentiality of stored data
Confidentiality of communicated data
Integrity of stored data
Integrity of communicated data
Identification and authentication of users
Authorized access to application services
Guaranteed access to services by authorization parties
Accountability of data access and service execution
Isolation of data within a VO
Isolation of services within a VO

In order for the secure running of the XtreemOS–supported system, these
requirements should be fulfilled at every point of time and not just during VO
formation or dissolution. Such emphasis becomes absolutely necessary due to
distributed nature of the system.

2.2 Assets
Having defined the security objectives and requirements we list the identified

assets in our system. We consider both stored and communication assets for
our analysis. Our assets for an XtreemOS–supported system are as follows:

user and administrator authentication credentials for the Grid;
user and administrator authorization credentials for the Grid;
VO–membership credentials;
filesystems – both local and filesystems shared on the Grid;
user and process data transmitted between nodes by XtreemOS;
VO–specific data on a resource (there will be data of different VOs on a
resource, so isolation of these data from each other is important);
services within a VO and their identifiers;
infrastructure–specific information (such as keys for Public–Key Infrastr-
ucture);
user and service attributes;
reputation data of services and resources (we envisage use of reputa-
tion for selecting services and resources at a later stage of XtreemOS
development);
OS–specific information (e.g. synchronization data);
logging information.

56

All these assets require a level of protection to be specified and mechanisms
to be put in place to provide such protection.

2.3 Threats
Threat modelling for the Grid systems has been done in many other research

studies [5–6]. While various common threats are identified for the overall Grid
architecture, threats in Grid middleware and the underlying operating systems
have not been studied in–depth. In the context of XtreemOS, we classify below
some common threats and some XtreemOS–specific threats.

Threats to availability Denial–of–service attacks are the most common at-
tacks in Grid systems. Although not specific only to Grids, these threats are
easier to realise than any other threats in Grid systems. Denial of service to
nodes, denial of service to services, denial of service to a VO, denial of service
to filesystems are all examples of these threats. Recently, a new kind of threat
has been derived from these threats; distributed denial of service (DDoS) on
the Internet using Grid nodes (e.g. DDoS attack on Sun Grid in 2006). The
realisation of such threats is drastic and defeats the purpose of collaboration in
Grid systems, thereby making these threats significant to mitigate in any Grid
system including XtreemOS.

Threats to authentication Threats in this category range from injecting false
authentication credentials, to test misconfigurations in management of authen-
tication mechanisms, to masquerading as genuine users of the Grid. Theft of
authentication credentials, exploiting revocation policy within the system by re-
playing invalid credentials and brute–forcing user private keys are examples of
threats in this category. These threats probably form the second largest category
that Grid systems are exposed to.

Threats to authorization Authorization restricts access to resources and ser-
vices only to users who provide respective credentials. Threats to authorization
include false injection of authorization credentials, masquerading as authoriza-
tion providing entity (e.g. masquerading as KTC in Kerberos) etc. Although
realisation of these threats require skilful attack strategies, authorization threats
if realised can be highly damaging to the normal functioning of Grid systems.

Threats to confidentiality of data The realisation of such threats will lead
to unauthorised disclosure of data. Eavesdropping (both active and passive)
and masquerading to reveal data are examples of such threats. Confidentiality
is required while passing job results, inter–VO communications and during
authentication in Grid systems.

Threat Analysis and Attacks on XtreemOS: a Grid–enabled Operating System 57

Threats to integrity of data It is one of the fundamental requirements for
XtreemOS to preserve the integrity of data. Threats to integrity will address
unauthorised modification of data in–transit and stored data to achieve the goals
of the attacker(s). It becomes difficult to detect such threats if the consequent
state of the system remains unchanged. Active eavesdropping and man–in–
the–middle attacks are realisation of such threats.

Threats to isolation of data Isolation of VO–specific data is of great con-
cern in Grid systems due to possible conflict–of–interests between VOs. These
threats are specific to Grid systems and to XtreemOS in particular. VO–session
hijacks, compromising node security, worms, trojans etc are examples of threats
in this category. To mitigate such threats, we are currently looking at virtuali-
sation and Trusted Computing (TCPA) as possible solutions.

3. Attacks
Having identified various threats in XtreemOS, we move on to focus on

attacks on XtreemOS system. At a later stage we visualise a few of these
attacks by using attacker trees.

The overall XtreemOS architecture framework is given in Figure 1.

Application Programming Interfaces (APls)

XtreemOS
-PC

X
tr

ee
m

O
S

-F
X

tr
ee

m
O

S
-G

XtreemOS
-SSI

XtreemOS
-MD

Scheduling SecurityData
Management

Mobile
Platforms

Figure 1. XtreemOS Architecture

For the attack analysis, in the XtreemOS architecture only the two layers,
namely XtreemOS–F and XtreemOS–G layer are important to us. XtreemOS–
F layer is concerned with kernel–level extensions to the native Linux oper-
ating system. As we envisage developing XtreemOS for a variety of plat-
forms, various flavours of XtreemOS will exist to support mobile platforms
(XtreemOS–MD), for PCs (XtreemOS–PC) and for clusters (XtreemOS–SSI).
The XtreemOS–G layer implements the grid–oriented extensions and services
for security, scheduling, data management (XtreemFS) and support for mobile
platforms.

58

Considering this architecture and the overall system, the following are the
types of attacks the attacker may execute.

User and Admin Credential Attacks: Attacks on user identity credentials
and VO–membership credentials fall into this category. A Grid user credentials
are normally proxy certificates given to the user on successful registration.
These proxy certificates have a validity period (e.g. for VOMS it is normally
12 hours), which makes the attack harder to execute. These attacks can be
carried out either by brute–forcing user passwords, compromising user system
to reveal private keys, replaying revoked credentials to inspect cycling or even
masquerading as Certificate Authority.

Communication Attacks: These types of attacks focus on gaining creden-
tials and assertions in communications between nodes, VO administrators and
VO members. Eavesdropping, packet–filtering of unencrypted communica-
tions, brute–forcing encrypted communications etc are examples of these types
of attacks.

Site Management attacks: Detecting vulnerabilities in site management and
exploiting those vulnerabilities are part of these types of attacks. XML Poi-
soning, insufficient authentication credential verification (AuthN/Z), insecure
logging etc are examples of these attacks. Attacks of this nature should be de-
tected by intrusion detection systems (IDS) and by having strong policies and
mechanisms to implement them.

Perimeter and Injection attacks: Attackers may try to compromise a site’s
perimeter security by tunnelling through firewalls (SSH tunnelling), malicious
inputs, dictionary attacks, brute–forcing, SOAP message poisoning etc. Once
attackers gain access to site resources, they can try to disrupt communications
by denying services or eavesdropping.

Denial of service (DoS) attacks: The attacks of this kind try to disrupt com-
munications and deny services to resources to users. These are probably the
best identified and prevalent attacks in current Grid systems. Examples include
denying service for registration, job submission, results delivery etc.

In case of XtreemOS, if we consider the architecture in Figure. 1, in the
XtreemOS–F layer we need to consider User Credential attacks, Site Manage-
ment Attacks and DoS attacks.

User Credentials are stored in native Linux as passwords in /etc/passwd
and /etc/shadow files. Security of these files is of prior importance to prevent
User Credential Attacks. Proxy Certificates and proxy agents used should be
secured and unauthorised tampering should be prevented. Site Management

Threat Analysis and Attacks on XtreemOS: a Grid–enabled Operating System 59

attacks could be realised by improper management, for e.g. by insecure audit-
ing or logging. For example, we plan to extend the Pluggable Authentication
Modules (PAM) to authenticate users. Testing of modules should be done prior
to using them in XtreemOS–F and any conflicts with other modules which arise
need to be inspected. In addition, in every administrative domain a strong pass-
word policy should be implemented in order to mitigate brute–forcing password
threats.

Site Management Attacks include a wide range of attacks. If logging is
enabled for accountability, logs should be secured and if possible backups stored
in a location separate from production nodes. For detecting abnormalities in
usage, Intrusion Detection Systems (IDS) and firewalls should be used.

Defence against DoS attacks is difficult. However, proper policy manage-
ment and implementation can lead to lessening of such attacks. Detection of
unauthorised use and proper authentication procedures will make it difficult for
attackers to compromise security controls. In XtreemOS–F layer, authorised
access control, proper authentication and secure logging and log inspection will
lead to a considerable decrease in such attacks.

In the XtreemOS–G layer, the opportunity of attacks becomes wider. From
the above classification it is obvious that all the types of attacks can be realised
at this layer. A short description is given below.

In the XtreemOS–G layer, we include security services provided to achieve
security objectives. In respect to User Credential attacks, security services for
authentication become prominent. Communications between users, VO ad-
ministrators, Certification Authorities (CAs) and other authorities (for e.g. if
Kerberos is used than between KTC and user) need to be encrypted. This is
not only a requirement in XtreemOS–G, but also a building block for leverag-
ing other services like authorization. Revocation of user credentials is another
important aspect at this layer. The revocation mechanism, window of accep-
tance and updates to Certificate Revocation Lists (CRLs) must be correctly
implemented at this layer.

Site Management is a major security issue in this layer. As we are us-
ing VOs, VO Management (VOM) needs to be robust against various attacks.
VOM should not have conflicting policies and policies should be implemented
as designed. In case of node failures, job controllers and users should be no-
tified and before restarting jobs policies should be consulted. Authorization
to use resources depends heavily on site management. User roles, capabilities
and other attributes need to be verified before granting access to resource. Mis-
configurations in any of these critical decisions will lead to vulnerabilities and
attack realisation.

DoS attacks at this layer can be realised by denying access to resources and
services. For resources, replicas of files can be a considerable defence against
these attacks. In addition, regular backups and replicated systems can help in

60

providing near–constant availability. For services, proper timeout features and
suitable error handling can prove to be a defence.

For perimeter attacks, detection of unauthorised use is probably the best
method. Site perimeters are often deployed with application and packet–
filtering firewalls. Strong firewall rules based on access policies, accompanied
by IDS and constant log inspections can help to disregard such attacks. Port
scans, unsuccessful login attempts and XML poisoning detection through XML
firewalls will help in securing sites against perimeter attacks.

4. Visualising Attacks
In this section, we use a common approach to visualise attacks in networks,

namely attacker trees. Having identified a set of attacks in XtreemOS and
overall system we here create attacker trees to identify what tools attacker(s)
may use to realize these attacks. Due to space restrictions, we only present a
single attacker tree here, but currently we are developing a number of attacker
trees covering the range of threats to Xtreemos as part of our threat analysis.

Case Study: Unauthorised Access to Resources attack
A specific attack was identified while considering the below attacker tree.

The attack is a Site Management Attack whereby the attacker observes the
conflict between VO and local site policy and exploits such a vulnerability to
mount an attack.

Setting: A realistic setting is assumed in the attack. A set of users are mem-
bers of the VO and are administered by their local site policy. The VO itself
has its VO policies in respect to access, membership etc. A VO manager grants
users access to resources. On the resource side, local site administrators govern
access to resources. Local site policy for access to resources exists for VO/Grid
users. For the current attack, we consider one particular case. Access to re-
sources is granted based on union of site and VO policy (for other case studies
we also consider other approaches to combine local and VO policies).

Assets: Assets in this case are user credentials, VO attributes, roles (Grid
User, VO Admin, Local Admin), filesystems and authentication, authorization,
discovery, VO registration services.

Threats: Since we only consider stored data in this case study, we identify
the following threats:

Unauthorised disclosure of information and stored data.
Unauthorised modification of stored data.
Unauthorised disclosure of job results.

Threat Analysis and Attacks on XtreemOS: a Grid–enabled Operating System 61

Attacker Tree: The Attacker tree is shown below with the attack marked.

Figure 2. Attacker Tree

Attack: The attack was identified on recursively expanding the attacker tree.
In this particular case, as the access is granted based on union of VO and
site policies, either a user or VO admin will get more than required access.
For example, if VO policy grants only read access to a user and the local
policy grants only write access, the user will have read/write access on
the resource rather than just a read access. Merging VO and site policies is
a difficult problem, but we are required to provide a service within XtreemOS
that can detect such conflicts if they occur.

5. Conclusions
We have presented here a preliminary threat analysis on XtreemOS, a Grid–

enabled operating system. We have identified various threats and attacks in
accordance with our set security requirements and visualised attacks in attacker
trees. This work is ongoing and we will continue to expand on our threat analysis
as our system develops and document a variety of threats throughout the process.
A rigorous threat analysis will help in making XtreemOS robust against a wide
range of attacks. We will then use this analysis to provide a set of test cases
and, thus, provide a level of assurance to the user community. This analysis
will also be used for formal security modelling of the XtreemOS system and
consequently help in derivation of the system’s security policy.

Acknowledgments
We would like to thank all the members of XtreemOS consortium for their

constant support and hard–work.

62

References
[1] Grid Security Infrastructure http://www.globus.org/security/overview.html.

[2] C. Morin. XtreemOS: a Grid Operating System Making your Computer Ready for Partici-
pating in Virtual Organizations. 10th IEEE Intl. Symposium on Object–oriented Real–time
distributed Computing (ISORC 2007) – to appear.

[3] P. Padala, GridOS, http://www.eecs.umich.edu/ ppadala/research/gridos/

[4] Legion Project, http://legion.virginia.edu/index.html

[5] S. Naqvi and M. Riguidel. Threat model for grid security services. LNCS. Volume 3470
pp. 1048–1055, 2005.

[6] Demchenko Y., Web Services and Grid Security Vulnerabilities and Threats Analysis,
EGEE JRA3 Technical document.

[7] V. Welch, F. Siebenlist, I. Foster, J. Bresnahan, K. Czajkowski, J. Gawor, C. Kesselman,
S. Meder, L. Pearlman, S. Tuecke. Security for Grid Services. Proceedings of HPDC–12,
pp. 48–57, IEEE Press, 2003.

[8] I. Foster, C. Kesselman, G. Tsudik, S. Tuecke. A Security Architecture for Computa-
tional Grids. Proceedings of the 5th ACM Conference on Computer and Communications
Security Conference, pp. 83–92, 1998.

[9] R. Alfieri, R. Cecchini, V. Ciaschini, L. dell’Agnello, A. Frohner, K. Lrentey, and
F. Spataro. From gridmap–file to VOMS: managing authorization in a Grid environment.
Future Generation Computing Systems. Volume 21(4), pp. 549–558, ACM Press, 2005.

A UTILITY-BASED REPUTATION MODEL
FOR SERVICE-ORIENTED COMPUTING∗

Gheorghe Cosmin Silaghi
STFC Rutherford Appleton Laboratory and University of Coimbra, DEI
Chilton, Didcot, OX11 0QX, UK Polo II, 3030-290, Coimbra, Portugal
g.c.silaghi@rl.ac.uk gsilaghi@dei.uc.pt

Alvaro E. Arenas
STFC Rutherford Appleton Laboratory
Chilton, Didcot, OX11 0QX, UK
a.e.arenas@rl.ac.uk

Luis Moura Silva
University of Coimbra, DEI
Polo II, 3030-290, Coimbra, Portugal

luis@dei.uc.pt

Abstract Reputation systems have emerged as a method for fostering trust amongst stran-
gers in electronic transactions. In this paper we propose a utility-based model
for reputation tailored for service-oriented computing. In contrast to most other
reputation models that require direct feedback from users, our model build the
reputation from information provided by monitoring systems, making it suitable
for service-oriented settings such as Grids. Usefulness of the model is described
by showing how the efficiency of resource brokering in Grids can be improved
by using a reputation-based scheduler scheme.

Keywords: Reputation; Service-Oriented Computing; Utility Computing; Grids.

∗This work is funded by the European Commission under the IST FP6 projects CoreGRID –project
No.004265– and GridTrust –project No. 033827–.

64

1. Introduction
Reputation systems have emerged as a method for fostering trust amongst

strangers in electronic transactions. A reputation system gathers, distributes,
and aggregates feedbacks about participants’ behaviour. The feedback is usu-
ally provided as a-posteriori operation requiring human intervention. One major
drawback is that users will try to misrepresent the obtained quality of services
in order to make more profit, or to lie or provide misleading ratings in order to
achieve some specific goals [5].

This way of building reputation is useful in semi-automatic contexts, such
as electronic marketplaces where users rate sellers, but it becomes a limita-
tion in fully automatic contexts. For instance, Grid computing focuses on the
development of a distributed service environment that integrates a variety of re-
sources with various quality of service capabilities in order to support scientific
and business problem solving environments. In a typical Grid scenario, mid-
dleware services like brokers select resources by obtaining basic information
about them from directory services; the type of information usually includes
functional and quality of service properties of the resource. The selection
process can be enriched by providing reputation information about resources.
However, in several Grid applications, resource usage is transparent to the end
user, making difficult to obtain a qualification.

This paper proposes a reputation model that overcomes above limitations
by using some basic assumptions considered valid in service-oriented architec-
tures, and Grids in particular, such as the existence of trustworthy monitoring
systems. A monitoring system provides information about services and the
actual service delivery. Instead of asking the user to provide the feedback after
having a transaction, we use monitoring information as a substitute to build the
direct reputation.

Our reputation model is based on ideas of utility computing. User feedback is
represented as a utility function which reflects the satisfaction a user perceives
from consuming a service. The user provides such a utility function before
committing to use a service either by building the utility function herself or
by selecting the function from a library of utility functions. The user’s utility
function will be then applied on the monitoring information in order to calculate
the reputation of the service.

Section 2 describes our proposed reputation model. Next, in section 3 we
show how the metrics of the model work by experimenting with various types
of service delivery, and describe a potential application of our reputation model
for improving resource brokering in Grids. Then, section 4 compares related
work. Finally, we conclude the paper in section 5 by summarising main results
and highlighting future work.

A Utility-Based Reputation Model for Service-Oriented Computing 65

2. A Utility-Based Reputation Model
This section describes a utility-based reputation model that aims at registering

the reputation of service providers based on the satisfaction of users.

Definition 1 (Services, Issues and Expectations)
Let X = {x1, x2, . . . , xn} denote the set of services, with x ranging on X . Let
SP denote the set of services providers, with b ranging on SP , and function
S : SP → P(X) denoting the services provided by a service provider, where
P represents the power set operator. Let SC denote the set of users (service
consumers) of the system, with c ranging on SC.

Each service has associated issues of interest, denoted by set I , which users
are interested in monitoring; variable i ranges on I . Function IS represents
the set of issues of interest for a service: IS : X → P(I). Function Oc :
X × SP × I → R denotes the expectation of user c on the services he uses,
where R denotes the real numbers. Notation vb,c

x,i represent the expectation of
user c on issue i of service x supplied by provider b.

For instance, in classical service-oriented architectures, a potential issue of
interest could be the quality of service. In this case, the user expectation would
be the service level agreement, the formal negotiated agreement between a user
and his service providers.

Based on his expectation, a user can develop a utility function which reflects
the satisfaction he perceives from consuming the service.

Definition 2 (Utility Function)
Let U c,b

x,i (v) denote the utility that user c gets by obtaining the actual value
v ∈ R on issue i from service x of provider b. Utilities will be normalized and
scaled to [0, 1], getting the user a utility of 1 if provider b actually supplies with
the expected value vb,c

x,i for issue i from service x. If the provider supplies a better

quality, the user gets the utility of 1. Therefore, we have U c,b
x,i : R → [0, 1].

If the service has a direct valuation scale (i.e. bigger supplied value, better the
satisfaction the user gets), equation (1) can be an example of a utility function.

U c,b
x,i (v) =

⎧
⎨

⎩
1 v ≥ vb,c

x,i
v

vb,c
x,i

v < vb,c
x,i

(1)

We assume that the IT infrastructure provides a trustable monitoring service
that delivers regularly events indicating the current value of the issues of interest
for those services in execution. Events are captured by the reputation engine
in order to generate the reputation values at different levels - issue, service or
service provider.

66

Definition 3 (Events)
An event e = ((c, b, x, i), t, v) indicates that at time t the issue of interest i
for service x provided by b for user c has value v. The set of events E consists
of triples ((SC × SP × X × I) × N × R), where N and R stand for the
natural and real numbers respectively.

For each event reported by the monitoring service, having the utility function
of a consumer c, one can compute the instant utility U c,b

x,i (v), indicating the actual
satisfaction the consumer is getting at that moment. This allows us to calculate
the reputation of a service provider.

Definition 4 (Reputation Function for Issues of Interest)
The reputation of a service provider b in relation to issue i of service x at time
t can be defined as follows:

Rb
x,i(t) =

∑
c∈SC

∑
((c,b,x,i),te,ve)∈E∧te≤tϕ(t, te) ∗ U c,b

x,i (ve)
∑

c∈SC

∑
((c,b,x,i),te,ve)∈E∧te≤tϕ(t, te)

(2)

where ϕ(t, te) is a time discount function which puts more importance on events
closer to present.

It is worth noticing that the reputation measure incorporates information
supplied by various users who consumed the service in the past. Reputation
equation (2) is inspired by the aggregation presented in [9].

As in [9], we developed the reputation deviation to provide a fitness measure
for the reputation value. The reputation deviation shows how much the repu-
tation varies in time. In contrast to [9], in our model, the lower the reputation
deviation, the better the confidence one can put on the reputation value Rb

x,i.

Definition 5 (Reputation Deviation for Issues of Interest)
The reputation deviation of a service provider b in relation to issue i of service
x at time t can be defined as follows:

DRb
x,i(t) =

∑
c∈SC

∑
((c,b,x,i),te,ve)∈E∧te≤tϕ(t, te) ∗

∣∣∣U c,b
x,i (ve) − Rb

x,i(t)
∣∣∣

∑
c∈SC

∑
((c,b,x,i),te,ve)∈E∧te≤tϕ(t, te)

(3)

Based on above definitions, we can derive the reputation of a service as the
aggregation of the reputations on the issues of interest of such service.

Definition 6 (Reputation and Reputation Deviation for a Service)
The reputation and reputation deviation for a service provider b in relation to

A Utility-Based Reputation Model for Service-Oriented Computing 67

service x at time t can be defined as follows:

Rb
x(t) =

∑
i∈IS(x) Rb

x,i(t)
#IS(x)

DRb
x(t) =

∑
i∈IS(x)

∣∣∣Rb
x,i(t) − Rb

x(t)
∣∣∣

#IS(x)
(4)

where # corresponds to the cardinality of a set.

Likewise, the reputation of a service provider can be defined as the aggrega-
tion of the reputation of the services it provides.

Definition 7 (Reputation and Reputation Deviation for a Service Provider)
The reputation and reputation deviation for a provider b in relation with all ser-
vices it delivers at time t can be defined as follows:

Rb(t) =
∑

x∈S(b) Rb
x(t)

#S(b)
DRb(t) =

∑
x∈S(b)

∣∣∣Rb
x(t) − Rb(t)

∣∣∣

#S(b)
(5)

In our model we require a user to deliver the utility function for their tasks.
Can the user indeed formulate the utility function for his tasks? In [2], it is
acknowledged that finding the utility function of all grid actors is a difficult
task. In economic market approaches to the grid ([2, 1]), the emphasis is put
on producers and consumers which take decisions according with their internal
utility functions and the outcome of these decisions is the pricing assessment
for the grid services. Therefore, one can learn the internal utility functions of
the grid agents by observing how they price the grid services. As our goal is
to keep our reputation model simple, we do not intend to enter the scope of
accountability in grids. Therefore, if the user is not able to define his utility
functions, the reputation manager will simply ask the user to characterize how
important is the realization of the expected values for a given task. Based on
this response (which can be a discrete one, i.e. very important, don’t know,
not so important), the reputation manager can assign a utility function selected
from a template library.

3. Evaluation of the Reputation Model
Some simulations were performed in order to validate the intended properties

of our reputation model.

3.1 Initial Experiments
Initially, we consider the simplistic approach in which a resource provider

supplies one service –storage– and the service has one issue of interest –storage
capacity–. The user expectation for storage capacity is 100Gb, and uses the
same utility function (equation (1)) for all his tasks during the time of the
experiment.

68

Further, we assume that the provider delivers the service according with
some pre-established patterns. The reputation function for a issue of interest
(equation 2) requires a time discount function; following [3], the time discount
function is defined as ϕ(t, tj) = e−

t−te
λ . We took a time frame of 1000 time

units (tu) for our experiments, using λ = 200. The reputation engine is set
up to compute the reputation values according with the formulas presented in
section 2 at every 20 time units.

The provider supplies a storage capacity uniformly distributed around the
expected value of 100Gb. We took a variation band of 20Gb, from 85-105.
Figure 1 shows how the reputation measure reflects this pattern of delivery for
the service and the issue. We can notice that after a short learning time frame,
the reputation stabilizes itself around some value. Next, we generated a harder
drop down in the delivery of the capacity issue at a provider site. Between time
units 200 and 300 the provider drops the supplied capacity with 20Gb. Figure
2 shows the results. We can notice that the reputation value immediately drops
after the the fall in delivery and it does not recover at the initially existing level
even at the end of the time frame.

0 100 200 300 400 500 600 700 800 900 1000
50

60

70

80

90

100

110

ac
tu

al
 Q

oS
 d

el
iv

er
ed

0 100 200 300 400 500 600 700 800 900 1000
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

time

re
pu

ta
tio

n

Figure 1. Reputation when the issue is de-
livered normally distributed around the ex-
pected value

0 100 200 300 400 500 600 700 800 900 1000
50

60

70

80

90

100

110

ac
tu

al
 Q

oS
 d

el
iv

er
ed

0 100 200 300 400 500 600 700 800 900 1000

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

time

re
pu

ta
tio

n

Figure 2. Reputation when there is a decay
in delivery

The next experiment emphasizes the usage of reputation deviation. We con-
sider two providers: first provider supplying uniformly distributed values in a
variation band (line dotted with circles in Figure 3), and second provider sup-
plying normally distributed values with the same mean and a deviation being
half of the bandwidth selected for the first provider (line dotted with squares
in Figure 3). Let the variation band to be between 85 and 105. Analyzing the
upper diagram of figure 3, we can notice that reputation itself is not enough to
characterize which provider is more reputable. However, the reputation devia-
tion, as expected, is smaller (i.e. better) for the second provider, which makes
the difference between the providers. Based on the reputation deviation, one

A Utility-Based Reputation Model for Service-Oriented Computing 69

0 100 200 300 400 500 600 700 800 900 1000
0.78

0.79

0.8

0.81

0.82

0.83

0.84

re
pu

ta
tio

n

0 100 200 300 400 500 600 700 800 900 1000
0.08

0.09

0.1

0.11

0.12

0.13

0.14

time

re
pu

ta
tio

n
de

vi
at

io
n

normal distribution
uniform distribution

Figure 3. Reputation and reputation deviation in the case of different QoS deliveries

can decide which reputation value is more reliable and distinguish between the
above patterns of delivery.

3.2 Enhancing Resource Brokering with Reputation
Resource brokering is defined as the task of selecting and allocating the most

appropriate resource for a given job. Resource brokering is a wide research area
in grids and is not the scope of this paper to enter the full details of this problem.
Instead, we want only to point out that using reputation can be beneficial for the
effectiveness of the brokering process, compared with simplistic approaches
that use no intelligent technique to tackle this problem.

We performed our experiments using the SimGrid simulator [8], on which
we implemented the following reputation-based scheduling scheme: when
scheduling a job to a resource, the resource broker considers all available nodes
that fulfill all service requirements for that job; it then schedules the job to the
most reputable node. We implemented also a monitoring service that observes
the quality of the service delivery during the execution and reports events to a
reputation manager, following our reputation model.

In our experiments, we compared a simple brokering algorithm like round-
robin scheduling with our reputation-based scheme. Round-robin scheduling
has also been used as a base comparison in [2]. In the round-robin approach,
the broker immediately schedules a task that arrives in its queue to the next

70

grid node that comes in the round-robin scheme. To measure the difficulty of
the brokering problem, load factor parameter was used [2]: load factor is light
if in a certain period of time the number of jobs submitted is small, and the
length of the jobs are short; otherwise the system load is heavy. We use the
same parameter for the x dimension of Figures 4 and 5. For our experiment,
we allow 20% of the nodes to produce random values uniformly distributed in
a variation band between 85 − 105% of the expected service value. We use
the time discount function defined previously, with λ tuned to 200. In order to
keep low the memory of events related with an issue of a service provider, we
discard all events for which ϕ(t, te) < 0.01

In the experiment we record two parameters: the total completion time for
the entire batch of jobs and the total welfare produced in the system by counting
all utilities acquired by the users for the submitted jobs. Figure 4 depicts the
total completion time for different loads of the system. We can notice that with
reputation-based scheduling, the total completion time is better with around
25%. This 25% gain in completion time can be very significant in the case of
high load factors.

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

load factor

co
m

pl
et

io
n

tim
e

round robin

reputation

Figure 4. Completion time comparison

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

load factor

w
el

fa
re

 /
tim

e

round robin
reputation

Figure 5. Total welfare produced per unit
of time comparison

Figure 5 compares the total welfare produced on the time unit. In the case
of the reputation-based scheduling, the efficiency of the system, measured as
the amount of welfare produced on a time unit, is higher. Regardless the load
of the system, the user feels more satisfied from consuming the services in the
utility-based scheduling. A good outcome is the fact that the amount of welfare
produced per unit of time stabilizes for high load of the system. Again, about
25% gain of welfare is recorded. For both cases, only 20% of nodes in the grid
violated the expectations with only maximum 15%, leading to an average of
only 3% violation of the expectations for the overall grid.

A Utility-Based Reputation Model for Service-Oriented Computing 71

4. Related Work
There are some previous models of reputation for Grids system. The Grid-

EigenTrust model [7] integrates trust management as part of the QoS manage-
ment system. They consider both direct and indirect trust, acquired at the level
of grid entities and contexts (i.e. service delivery), after transaction execution.
PathTrust [6] proposed a reputation system for member selection in the for-
mation phase of a virtual organization. When inviting members to join a VO,
the initiator selects only those members whose reputation is above a certain
threshold and probabilistically selects a member to be in the VO, as we did for
selecting node where to schedule some task. The reputation is built by aggregat-
ing positive and negative feedback the user submits after transaction execution.
These two approaches have the limitation on depending on the direct feedback
from users.

Reputation can be built based on the internal beliefs of the agents, as in the
subjective logic of [4]. In multi-agent research, techniques based on aggregating
over several sources of trust have been considered [3, 9]. REGRET model
[9] aggregates over the individual, social and ontological dimension in order to
obtain a reputation to be used on an electronic marketplace. They inspired us
with the aggregation metric for the reputation and with the reputation deviation.
But their model is based on impressions collected after the transaction, which
limits the applicability of the model to the grid. We distinguish from them
overcoming this limitation by asking the utility function of the user before the
transaction and by the usage of the trusted monitoring information. More, in
our approach, the reputation is aggregated considering the view of several users.

5. Conclusion
In this paper we have presented a reputation model based on ideas of utility

computing, tailored for service-oriented contexts. For each service, the user
defines issues of interest and expected values on such issues. The satisfaction
of the user on a service is measured by a utility function. Reputation of a
service issue is then built by comparing its expected value with the actual
value, delivered by a monitoring system. Reputation of a service is built as the
aggregation of the reputations of its issues. Likewise, reputation of a service
provider is built as the aggregation of the reputation of all services it delivers.
This robust and scalable way of calculating reputation does not depend on direct
feedback collected after the transaction. We have shown the usefulness of the
model in improving the efficacy of resource brokering in Grids when using a
reputation-based scheduling scheme.

72

References
[1] R. Buyya, D. Abramson, and J. Giddy. A case for economy grid architecture for ser-

vice oriented grid computing. In IPDPS ’01: Proceedings of the 10th Heterogeneous
Computing Workshop - HCW 2001 (Workshop 1), page 20083.1, IEEE Computer Society,
2001.

[2] Li Chunlin and Li Layuan. Multi economic agent interaction for optimizing the aggregate
utility of grid users in computational grid. Applied Intelligence, 25(2):147–158, 2006.

[3] T.D. Huynh, N.R. Jennings, and N.R. Shadbolt. An integrated trust and reputation model
for open multi-agent systems. Autonomous Agents and Multi-Agent Systems, 13(2):119–
154, 2006.

[4] A. Jøsang and S.J. Knapskog. A metric for trusted systems. In Proceedings of the 21st
National Information Systems Security Conference, (NIST-NCSC 1998), 1998.

[5] A. Jøsang, R. Ismail, and C. Boyd A Survey of Trust and Reputation Systems for Online
Service Provision Decision Support Systems, 43(2):618–644, 2007.

[6] F. Kerschbaum, J. Haller, Y. Karabulut, and P. Robinson. Pathtrust: A trust-based repu-
tation service for virtual organization formation. In iTrust2006: Proceedings of the 4th
International Conference on Trust Management, volume 3986 of Lecture Notes in Com-
puter Science, pages 193–205. Springer, 2006.

[7] G. von Laszewski, B.E. Alunkal, and I. Veljkovic. Towards reputable grids. Scalable
Computing: Practice and Experience, 6(3):95–106, 2005.

[8] A. Legrand, L. Marchal, and H. Casanova. Scheduling distributed applications: the Sim-
Grid simulation framework. In CCGRID ’03: Proceedings of the 3st International Sym-
posium on Cluster Computing and the Grid, page 138, IEEE Computer Society, 2003.

[9] J. Sabater and C. Sierra. Regret: a reputation model for gregarious societies. In 4th
Workshop on Deception, Fraud and Trust in Agent Societies. ACM Press, 2001.

VIRTUAL ORGANIZATION
MANAGEMENT IN XTREEMOS:
AN OVERVIEW∗

Erica Y. Yang, Brian Matthews, Amit Lakhani
RAL, STFC, U.K.
y.yang@rl.ac.uk

Yvon Jégou, Christine Morin, Oscar David Sánchez
IRISA/INRIA, France

Carsten Franke, Philip Robinson
SAP Research, CEC Belfast, U.K.

Adolf Hohl, Bernd Scheuermann
SAP Research, CEC Karlsruhe, Germany

Daniel Vladusic
XLab d.o.o., Slovenia

Haiyan Yu, An Qin, Rubao Lee
ICT/CAS, China

Erich Focht
NEC HPC Europe, Germany

Massimo Coppola
ISTI/CNR, Italy

Abstract XtreemOS aims to build and promote a Linux based operating system to provide
native Virtual Organization (VO) support in the next generation Grids. XtreemOS
takes a different approach from many existing Grid middleware by: first, recog-
nizing the fundamental role of VO in Grid computing and hence taking VO
support into account from the very beginning of our design; and, second, getting
around the overheads brought by layers of existing Grid middleware by enabling
native VO support in the Linux operating system. This paper presents our vision
of VOs in a Grid operating system and describes various aspects of VO manage-
ment in our system architecture, ranging from lifecycle management, application
execution management, security, to node-level enforcement mechanisms in op-
erating system.

Keywords: XtreemOS, Virtual Organization (VO), VO Management, Grid

∗We would like to thank the support from the European Commission under IST program #FP6-033576.

74

1. Introduction
XtreemOS is an European project with the objective to design, implement,

evaluate and distribute an open source Grid OS, named XtreemOS, which sup-
ports Grid applications, and capable of running on a wide range of underlying
platforms, from clusters to mobiles. The goal is to provide an abstract interface
to its underlying local physical resources, as a traditional OS does for a single
computer. While much work has been done to build Grid middleware on top of
existent OS, little has been done to extend the underlying OS to support Grid
computing, for example, by embedding important basic services directly into
the OS kernel. The approach being investigated is to base XtreemOS on exist-
ing Linux. A set of system services, extending those found in the traditional
Linux, will provide users with all the Grid capabilities associated with current
Grid middleware, but fully integrated into the OS.

A key feature of XtreemOS is native support for Virtual Organizations. The
term Virtual Organization (VO) is well-established within the context of eco-
nomics. The typical goals of a VO include the temporal collaboration of several
entities from different departments and their respective organizations towards
achieving a common business objective. In Grid computing, synergies can be
achieved by grouping users (provided by an identity infrastructure) which share
OS- and application-specific resources and interfaces of computing nodes in a
Grid [1].

The exact realisation of a VO differs from project to project. Some ap-
proaches concentrate on the legal or contractual arrangements between the par-
ticipating entities. Other task-oriented approaches emphasize the workflow to
achieve a goal. VOs can range from long-lived collaborations with many users
(typically found in large-scale scientific applications) to short-lived, dynamic
ventures to achieve one task between a small number of participants (typically
commercial scenarios). A general purpose Grid OS should take a flexible ap-
proach to satisfy as wide a range of applications as possible; the use cases in
XtreemOS reflect this diversity.

Thus, XtreemOS defines a minimal definition of the features of VOs and
provides a toolbox which can be configured to the needs of the application.
Key components of a VO are: VO administrators; a set of users and resources
in different domains; a set of roles which users and resources can play in the
VO; a set of policies on resource availability and access control; an expiry time
of the VO. VO goals or workflows are not modeled, though XtreemOS tools
allows these to be supported at application level. This will typically require
enforcement of policies, event notification of the completion of processes, and
monitoring of exceptional events, such as jobs still executing at VO expiration.

Virtual Organization Management in XtreemOS: an Overview 75

2. Requirements
The requirements for XtreemOS have been derived from a range of 14 ap-

plications [3]. In the following, we focus on requirements directly related to
VO management and security services.

Three different roles are involved in managing VOs: Domain administrators
maintain a pool of resources that are allowed to be integrated into a VO. They
have the ultimate control over what resources will be available to a VO and
regulate how a VO user uses its resources, and they ensure the reliability and
security of resources being provided to VOs. VO administrators compose VOs
from the resources provided by various domains, and they manage (e.g. create,
delete, and modify) user accounts and the permissions VO users have within a
VO. The role of the VO administrator can be assigned to one or more persons
from the participating institutions.

Users can register with one or more VOs so that they can utilize resources
from different VOs concurrently and independently. An individual may have
different roles and be assigned with different capabilities in different VOs. To
obtain a VO user account it is not necessary to have a pre-existing local user
account in one of the domains belonging to the VO. Moreover, it must be pos-
sible to transfer data, files and directories between local and VO accounts (e.g.
by copy or mount). Overlapping VOs are required, i.e. multiple VOs can be es-
tablished on the same node. The applications require exchange of information
between different VOs by means of messages (also instant messages), shared
memory and data transfer.

It is required that VO management actions be highly automated, allowing
them to be completed in a specified time threshold, typically to the order of
a few seconds. It must be possible to guarantee the lifetime of a VO for a
specified or an unspecified amount of time (until a notification e.g. by a user or
application). VO management must be supported by an API, a command line
interface and a GUI including VO monitoring facilities.

XtreemOS has to allow for dynamically changing the composition of VOs
during application runtime, e.g., if certain computing resources fail. In such
circumstances, the unavailable resources need to be automatically substituted
by alternative resources also including a migration of the affected running ap-
plication components.

Data stored on resources must only be accessible by users and administrators
that are members of a VO with the appropriate access rights. Confidential data
communicated must be encrypted. Loss of integrity of stored data must be
preventable and detectable. Data should be hashed and digitally signed by a
trusted key stored on the OS. The integrity of transferred data must be validated
before being committed (need for an OS reference monitor mechanism). The
OS must be capable of signing and verifying signatures of data in an end-to-

76

end manner. A transaction framework is necessary, considering the distributed
nature of the resources. Users should authenticate via single sign-on to gain
authorized access to VO resources. Administrators are capable of recording
the usage (by whom and when) of resources without users being able to deny
(repudiate) such usage. This includes a secure audit service with the ability to
the record timestamps and the VO in which a certain resource was used.

Isolation of VO users: As users may be involved in multiple VOs, it is then
necessary to separate their user data and have means of determining which
VOs they are currently working in, when accessing data. Isolation of data
per-VO: Data stored on the same resource for different VOs must show non-
interference. Isolation of services per-VO: Parties in different VOs must not be
able to recognize that they are sharing resources nor can they gain knowledge
of what other parties are doing with those resources. If one of two virtualized
services on the same physical resources fails, this must not interfere with the
other. It is proposed to investigate in how far virtual machines or containers
(e.g. provided by OpenVZ) can be used for the purpose of isolation.

3. VOs in XtreemOS Architecture
This section first sums up the VO management challenges addressed by

XtreemOS and then, describes various aspects of VO management in our sys-
tem architecture, ranging from lifecycle management, application execution
management, security, to node-level enforcement mechanisms.

3.1 Challenges
XtreemOS aims to provide native support for the management of VOs in a

secure and scalable way, without compromising on flexibility and performance.
Several key challenges are identified from both the requirement analysis and
investigation of most state-of-art Grid VO solutions.

Interoperability with diverse VO frameworks and security models. Dif-
ferent VO management frameworks and security models have been developed
so far and new ones keep on emerging. The diversity of their implementations
is embodied in their adoption of different user identities (e.g. X.509 end user
certificates, Shibboleth handles), different message sequences (e.g. push, pull
and agent models), different places to convey security attributes (e.g. proxy
certificates or SAML tokens) and different policy models (e.g. role-based ac-
cess control). XtreemOS must be able to interoperate with, rather than replace
these existing solutions and even traditional local security mechanisms (e.g.
Kerberos). It is a challenge that the operating system-level abstraction of VOs
in XtreemOS allows for integration of various existing VO structures.

Virtual Organization Management in XtreemOS: an Overview 77

Flexibility of policy languages. XtreemOS puts emphasis on that both sci-
entific and enterprise business applications are equivalently supported. Users
from these two representative application domains have different views of poli-
cies in a VO, in terms of subjects (users), objects (resources), access rights,
Service Level Agreement (SLA) and QoS constraints. Therefore VO policies
in XtreemOS have to be expressive and flexible enough to accommodate various
levels of resource access rules.

Scalability of management of dynamic VOs. In order to support large
numbers of users in a dynamic environment (dynamicity of resources and of
users) while still providing accurate isolation of these users, solutions such as
rather static files containing user information must be avoided. For example,
when VOs are dynamically changed, it is impractical for the VO manager to
update gridmap files on all resources, due to the heavy admin burden caused as
well as the difficulty to maintain data consistency.

Strong isolation, access control and auditing. Some applications request
for strong isolation of user applications on the Grid: hiding user identities, pro-
tecting files and processes, strict division of performance load, and so on. These
requirements are typical for most of the industrial applications. In some envi-
ronments this ability to generate strong isolated execution environment could
even be used to isolate individual processes on a single resource. Implementing
such requirements is difficult without operating system support. Furthermore,
a secure Grid system must provide strict access control from the service level
down to the system object level (files, sockets, . . .). In all cases, it must be
possible to monitor and log operating system service usage as well as system
object accesses. The audit log must contain references to user credentials (se-
curity ticket) and be securely provided to the resource owner as well as the VO
manager.

3.2 VO Management
In this paper, we use the concept, VO Management (VOM), to cover all the

infrastructural services that are needed to manage the entities involved in a VO
and ensure a consistent and coherent exploitation of the resources, capabilities,
and information inside the VO under the governance of the VO policies. A VO
policy is defined as an authorization statement that describes what activities
a subject (e.g. an entity in a VO) is allowed to perform on an object (e.g.
resources) with certain constrains (e.g. time, location), if there is any.

There are several stages of VO lifecycle: VO identification, VO formation,
VO operation, VO evolution, and VO dissolution. VOM plays a different role in
different stages of this lifecycle. During the identification stage, VOM is mainly
responsible for user management (e.g. registration, attribute management) and

78

VO policy specification (e.g. constrains on resource usages). During the for-
mation stage, VOM involves in the processes of resource matching, negotiation
and establishment of Service-Level Agreements (SLAs) by applying VO poli-
cies. The operation stage leverages the information made available during the
previous stages. In this stage, VOM coordinates logging, accounting, auditing
operations on nodes and ensures the availability of such information, if needed.
For jobs that require interactive sessions, VOM also provides authorized users
with facilities (e.g. credentials) to access the sessions of runtime applications.
The evolution stage takes place when the VO is altered during its lifespan, for
example, by a change in the participating entities or in their conditions of use.
During the last stage, VOM ensures the deletion of non-persistent information
(e.g. temporary files and accounts) and the reclamation of credentials.

3.3 VOM and AEM
In XtreemOS, application execution is managed by Application Execution

Management (AEM) services [2]. AEM services can be conceptually grouped
into two types of services: Job Management Services (JMSs) and Resource
Management Services (RMSs). JMSs cover all the job related tasks, such as
job scheduling, monitoring, event handling, and execution management. JMSs
are mostly operated on an individual job basis, that is, these services do not
have a global view of the system. RMSs cover all the resources related tasks,
including resource monitoring, selection, matching, negotiation, and allocation.
This section focuses on the interactions between VOM and AEM during the
job submission stage which is illustrated in Figure 1.

Figure 1. Interactions between VOM and AEM during the Job Submission Stage

VOM consists of two main components: authentication manager and autho-
rization manager. The job submission process starts from a VO user submitting
a job request to the authentication manager. The authentication is performed

Virtual Organization Management in XtreemOS: an Overview 79

against the credentials attached to the job request. Once a user is authenti-
cated, the job request is forwarded to JMSs, which in turn contacts RMSs to
select an initial list of resources. The selection is based on the job description
and resource characteristics. The list is then subject to the scrutinization of
the authorization manager to ensure that the job request and selected resources
conforms to the overall VO policies in this context. As a result of the policy
checking, an authorized list of the resources is then sent back to RMSs which
will forward it to JMSs for conducting resource negotiation. Once the resources
are successfully negotiated, JMSs will submit the job to RMSs which will then
be responsible for launching the job on remote nodes.

In this process, the functionalities of VOM are to ensure that: a) only au-
thenticated VO users can access AEM services; and b) the job execution will
conform to VO policies by engaging the authorization manager in the process
of resource selection.

3.4 Security
Because VOM involves in different stages of a VO lifespan, the design and

implementation decisions on security services will have a significant impact on
the efficiency and quality of the final XtreemOS operating system. This section
discusses some of the key issues.

In Figure 1, when a user initiates a job request, the request is shown to be
bundled with the user’s credential for authentication purpose. In practice, this
can be implemented in two different ways. The usual approach is to implement
the authentication independent from underlying operating system level authen-
tication. This is a popular approach adopted by many existing Grid middleware,
e.g. Globus. It has the simplicity of implementation but comes with the com-
plexity of configuration and management. That is, people who provide Grid
services have to set up and manage two largely independent layers of services.
In reality, it is common that more layers of services (e.g. Web services on top
of Grid services) are introduced to establish extra levels of controls.

In XtreemOS we propose an alternative approach by aiming to integrate
VOM as part of the OS. More specifically, VOM can be implemented as a
service that can be integrated directly with existing authentication infrastructure.
The benefits of this approach are described as follows. First, it reduces the
management and performance overheads introduced by the layers of controls.
Second, the hassle of accessing VO resources can be reduced. XtreemOS targets
for both simple applications (i.e. a single request for the entire execution) as
well as complex applications that involve interactivity and multiple execution
requests, for example, for debugging purpose. Because of this reason, we
anticipate that the integration of VOM as an OS level service should streamline
the session management required for managing complex application.

80

3.5 Node-Level Enforcement
The policies specified by a VO, such as security, resource limitations, schedul-

ing priorities and rules on how shared resources could be used by VO members,
will be finally checked and ensured at resource nodes.

In order to adapt to different VO models and reduce kernel code changes,
XtreemOS will use the PAM (Pluggable Authentication Modules) system [7],
which allows a system administrator to add (possibly VO-specific) authentica-
tion methods by installing new PAM modules.

Local user accounts in XtreemOS are allocated dynamically on each resource
to match the actual global users exploiting that resource. The XtreemOS PAM
plugins would be in charge of implementing (or interfacing to) a local ser-
vice allocating fresh local UID/GID couples upon request, of managing local
UID names, of managing user home-directories (either from XtreemFS, the
XtreemOS Grid file system [4], or on a scratch directory) and of managing the
user credentials for XtreemFS access. The dynamic allocation of user accounts
ensures XtreemOS scalability and reduces the complexity of VO management:
no need to configure resources when users are added or removed from VOs.

During session initialization, XtreemOS stores the user security ticket in
the kernel session keyring: this ticket will be associated to all local processes
generated by the user request (fork, execve, etc.), and will be retrieved each
time the global user identity or credentials need to be exploited: access to local
or external service, auditing, ...

Dynamic management of local UID/GID also provides some level of iso-
lation between Grid users: they do not share access to local files, and it is
possible to hide the real identity of a user in the local name space. XtreemOS
does not exclude the use of virtual machines, or process containers, to pro-
vide stronger isolation properties, like performance isolation (e.g. hiding CPU
usage, memory limits).

The policy enforcement points provide access control and auditing on op-
erating system services. Fine grain access control is also possible when the
application activity generates requests to external services. This is the case
for XtreemFS or NFSv4 filesystems. Fine grain access control and auditing
on operating system objects (processes, sockets, ...), requiring the support of
the Linux kernel, can be provided through the LSM (Linux Security Module
framework).

4. Related Work
This section briefly discusses two exemplary tools that are relevant to

XtreemOS in the area of VO management.

Virtual Organization Management in XtreemOS: an Overview 81

VOMS [5] is an important VO reference implementation to XtreemOS be-
cause it is currently a popular approach to integrate VO information (e.g. a
user’s roles in a VO) into node-level enforcement mechanisms.

However, managing VOMS effectively is an non-trivial task because autho-
rization decisions are often a result of a joint process between the VOMS server
(participating in the form of VOMS credentials) and nodes. Because both node
policy and configuration will be taken into account, it is difficult to figure out
what privileges a user has at a given time for a certain job. This is a practical
issue which can be a potential hurdle for the future acceptance of XtreemOS.

In order to make node-level access control and account mapping decisions,
nodes need to be knowledgeable of VO properties (e.g. roles and groups).
However, managing such knowledge consistently and coherently can be non-
trivial. This becomes a potential scalability problem for large VOs with a
significant number of properties. It also makes it difficult to create new VOs
and introduce new properties dynamically.

CAS takes control over the policy specification by explicitly spelling out
the relationship between VO users and resources [6]. CAS represents a push
model of enforcing VO policies because its policy enforcement is decoupled
from VO information (e.g. user groups/roles). Therefore, it is comparatively
easy to create dynamic VOs using the CAS model. However, it is not always
easy to figure out what VO resources users need to use in advance.

Overall, VOMS and CAS represent two different ends of the spectrum.
VOMS is lean to a pull model where access control is done at nodes by pulling
policy information on demand (i.e. from the VOMS credentials) whilst CAS is
a push model where authorization decisions are being pushed to nodes. Both
are complementary to each other. Because XtreemOS aims to provide generic
OS level support for Grids, we are investigating a combined use of both models
in our system.

5. Conclusions
In this paper, we have described the outcome of the first stage of the Xtreem-

OS project which has concentrated on developing requirements and initial ar-
chitectural design of VO support, at both the kernel level and within the Grid
support services of XtreemOS. This work is ongoing. The initial prototype
of XtreemOS which will provide the basic instantiation of this architecture is
under implementation. This will then be tested on a variety of use cases and
further refined.

Further extensions to the basic VO support are planned. These would in-
clude: mechanisms for federated authentication; trialing of expressive policy
languages; the role of virtualisation to support highly secure commercial VOs;
the integration of trust domains. Further, we regard it an essential for a practical

82

system that there should be some assurance provided that the systems does meet
recognised security criteria. Work is ongoing to derive a systematic analysis
of threats to the XtreemOS system, with a view to validating the integrity of
XtreemOS.

References
[1] Ian Foster, Carl Kesselman and Steven Tuecke. The Anatomy of the Grid Enabling Scalable

Virtual Organizations. http://www.globus.org/alliance/publications/papers/anatomy.pdf

[2] XtreemOS consortium. Requirements and specification of XtreemOS services
for Application Execution Management. Deliverable D3.3.1, November 2006.
http://www.xtreemos.org/publications/public-deliverables/.

[3] XtreemOS consortium. Requirements Capture and Use Case Scenarios. Deliverable
D4.2.1, January 2007. http://www.xtreemos.org/publications/public-deliverables/.

[4] XtreemOS consortium. The XtreemOS File System. Requirements
and Reference Architecture. Deliverable D3.4.1, December 2006.
http://www.xtreemos.org/publications/public-deliverables/.

[5] DataGrid VOMS (release v0.7.1). http://edg-wp2.web.cern.ch/edg-wp2/security/voms/

[6] CAS in Globus 4.2. http://www.globus.org/toolkit/docs/development/4.2-
drafts/security/cas/

[7] Andrew G. Morgan and Thorsten Kukuk. The Linux-PAM guides.
http://www.kernel.org/pub/linux/libs/pam/Linux-PAM-html/.

SEALED GRID WITH DOWNLOADABLE
SERVICES

Martin Kuba, Daniel Kouřil, Michal Procházka
Masaryk University, Botanická 68a, 602 00 Brno, Czech Republic
{makub,kouril,michalp}@ics.muni.cz

Abstract In a service-based grid, the data to be processed are usually moved to the service.
However this is not always possible for security and data privacy reasons, as
in biomedical grids processing patients’ data. The other way, moving services
to the location of the data, brings challenges in dealing with heterogeneity of
deployment environments. A solution for this problem is proposed in this paper,
based on services deployed in hardware virtual machines. Such setting allows a
user to download all needed grid services into a tightly controlled environment,
possibly even disconnected from the network, thus creating a “sealed grid” for
processing sensitive data.

Keywords: grid, services, virtual machines, trusted platform module

84

1. Introduction
The vision of Grid was originally motivated by High Performance Comput-

ing community needs to pool resources in order to have more computing power
and to be able to solve computationally intensive problems in less time. How-
ever, over time, more diverse communities become interested in the Grid not
because they needed more computational power, but because they needed the
sharing of resources across organizational boundaries, which Grid enables, and
these resources were not only processors and disk storage, but also remotely
controlled instruments, information and knowledge.

Our work in the MediGrid project is focused on the type of the grid, intended
for sharing knowledge in the biomedical domain, which can be expressed al-
gorithmically and shared among geographically dispersed medical specialists
[1, 3, 4]. The biomedical knowledge is encapsulated as data processing grid
services, and the grid infrastructure helps its users to discover and apply the
services to their data.

This type of grid is not a High Performance Computing (HPC) grid, nor a
High Throughput Computing (HTC) grid, as the point here is not to do a large
amount of computing or to process a lot of data. The medical applications
usually do not need to process large amounts of data, and the processing is not
very computation heavy. But one of the three defining features of a grid is that it
“coordinates resources that are not subject to a centralised control” [2]. And this
is the essence of the MediGrid – it coordinates medical knowledge resources
owned by independent organizations, providing non-trivial quality of service
by combining them. So it is the sharing of resources across organizational
boundaries, that needs the usage of grid technologies, and makes clusters or
other centrally administered tools insufficient.

The biomedical domain has particular requirements for dealing with patients’
data, as most countries have special laws protecting personal data, and the data
about patients cannot effectively leave the institution which collected them.
Even when such biomedical data are anonymized, i.e. all identification data like
name, address, date of birth, and various identification numbers are removed, it
is not possible to completely anonymize all data. For example, there are some
diseases so rare that only several patients suffer from them in a whole country
and the mere fact that an anonymous patient has the disease is sufficient to
identify the patient.

Given such limiting restriction on handling data, it is often not possible
to send the data outside the hospital or the other biomedical institution for
processing. So if we need to process such data, the only option is the other
way round, to move the processing software to the location of the data. Note
that this is the opposite of the classic computational grids, where the valuable

Sealed Grid with Downloadable Services 85

resource is the computing power. Here computing power is not important, and
the valuable resource is the knowledge behind the processing algorithms.

Our biomedical users specifically expressed the desire to be able to “down-
load” all grid services into their personal computer and then disconnect from the
network, so that they can be sure that no data would leak. Such a disconnected
personal computer running a whole grid is a special case of a more general
scenario, in which grid services are downloaded and put into a tightly con-
trolled grid environment separating them from the outside world. The tightly
controlled grid environment is administered by a single organization owning
the data to be processed, so the organization can be sure that the privacy of the
data cannot be compromised. Such a tightly controlled grid environment we
can call a “sealed grid”, because no data can escape from it. It is discussed in
the section 2.

However, moving software to data has its problems too, namely requirements
for the execution environment. A promising way how to satisfy the requirements
is the use of hardware virtual machines, where images of virtual computers
with complete operating system and installed services can be downloaded and
deployed, as is detailed in the section 3.

The possibility of moving services to data brings some consequences for
responsibility for the quality of data processing, which is discussed in the sec-
tion 4.

An important issue in biomedicine is the reproducibility of services’ results,
and that can be solved with the help of hardware Trusted Platform Module
chips, now available in many new computers. This issue is discussed in the
section 5.

An extension of the idea of a sealed grid is then given in the section 6, where a
machine outside the data owning organization can be used with the trade-off that
the downloadable images of grid services must be checked before deployment.

2. Sealed Grid Environment
As was sketched out in the section 1, there are domains where data confi-

dentiality and privacy are paramount. But even these domains may profit from
sharing resources on the grid, just it is not the data that may be transfered across
organizational boundaries. Then it must be the software for data processing,
that must be transfered.

Because the data must not be in any case transfered outside the owning
organization, the software must be put into a sealed environment, which will
not allow any communication outside its boundaries.

Providing software in the form of services, the so called Service Oriented
Architecture, solves many problems with dependencies and interdependencies.
Thus wrapping the software as services with interfaces described in machine-

86

understandable format, registered in a service registry, is the current architecture
of choice.

There may be more infrastructure services than just the service registry. In
the case of our biomedical grid, we added services for ranking of services, for
semantically aided building of a workflow and executing the workflow. We can
assume that the ranking of services and building of workflow can be done on
the “open grid”, as it does not involve the sensitive data. However, for the data
processing, the infrastructure services for registry and workflow execution need
to be available inside the sealed environment, as the deployed data processing
services would not be able to reach them otherwise. So the sealed environment
will need to provide a private copy of a part of the grid infrastructure, at least
the service registry, into which the services must register themselves.

3. Service Deployment in Hardware Virtual Machines
Every software has requirements on its execution environment in terms of

specific versions of operating systems, installed libraries or other software on
which it depends.

Even programs made for an execution environment specified in terms of
application-level virtual machines, like languages compiled into bytecode (Java
JVM, .NET CLI) or scripting languages (JavaScript, Shell, Perl, etc.) usually
do not run exactly in the same way on all implementations and versions of the
target platform. It is an inherent problem, because various implementations of
the same platform have different bugs, and an application must work around all
of them. A famous example is JavaScript implementations in WWW browsers,
where each version of each browser behavior differs slightly from the others.
Sometimes even the same version of the same browser behaves differently on
different versions of the same operating system. This problem is caused by
the simple fact that the execution environment specification provides too large
space for errors and depends on the expected behavior of all standard libraries.

On the other hand, hardware virtual machines (HVM) [5], like VMware
or Xen, provide discrete execution environments on a single computer, each of
which runs an operating system, thus providing the illusion of having an en-
tire computer. Software deployed inside a hardware virtual machine can have
exactly its required execution environment. All dependencies on a specific op-
erating system and its version, installed libraries or other software, are trivially
satisfied.

The touching point between the whole virtual computer and the virtual ma-
chine is much smaller than in the case of the application-level virtual machines.
It is mostly the CPU instruction set and a few peripherals like the network card
that need to be properly emulated, and in the case of the CPU it is often even
delegated to the real CPU, so the space for error is much smaller.

Sealed Grid with Downloadable Services 87

An image of a virtual computer, including its file system and state of memory,
can be packaged as a single file, and transferred over the Internet. Thus a grid
service can be installed inside a virtual computer, which can be than packaged
and distributed as a downloadable image.

There are already images available on the Internet with pre-installed Linux
and selected applications, like a database server, a web server, or anti-virus
email gateway, each packaged in a file just few megabytes large.

When such a HVM image with a grid service inside is deployed and started,
it can obtain an IP address using DHCP, and the service can search for a service
registry (using network broadcast or multicast) and register itself in the registry.
In this way the private service registry inside the sealed environment would be
aware of all the available services.

4. Downloaded Services and Trusted Computing
In the biomedical domain the data processing is a very sensitive issue. Not

only the data must be kept confidential, also the responsibility for the quality of
data processing needs to be known. Thus digital signatures of data producers
attached to all data are highly desirable. However, when a service is run under
the control of its provider, the provider can take some responsibility for the
quality of processing, but when the service is downloaded from its provider and
subsequently run by the data owner, the original provider is unlikely to take full
responsibility, as the service is no longer under its control. In that case the data
owner should provide the signatures.

Thus every service instance should be able to provide the signature of the
subject which currently runs it. In the case of the hardware virtual machines
we can leverage the TPM chip (Trusted Platform Module) which becomes
routinely available in all modern computers. The TPM chip uniquely identifies
each computer and stores private keys. Software can utilize the TPM chip to
encrypt data so that when the data is moved to another computer, it becomes
unusable.

The chip is accessible from hardware virtual machines [8], so a downloaded
image of a HVM can use the credentials of the hosting real hardware computer.
Thus a grid service deployed inside a HVM can have the identity of its original
provider, when run on its hardware, and it can have the identity of the data
owner when downloaded and run by the data owner.

Trusted Platform Module
The Trusted Platform Module (TPM) [7] is one of the building blocks of the

Trusted Computing Platform (TCG) [6], which aims to setup controlled secure
environment. The TCG covers many parts including network communication,
operating systems, client applications and users credentials. It defines specifi-

88

cations in each area, which a secure environment must comply with. TPM is a
microcontroller chip which is bound to the motherboard of a PC. TPM is used
in this environment for number of purposes. It uniquely identifies the computer,
it does basic cryptographic operations and can be used as a secure storage for
RSA keys. Till now TPM looks like a typical hardware token but TPM has
more functionality. It can be used for providing hashes of states of the system;
these hash values can be verified by other parties thus checking the integrity of
a remote system. TPM modules can talk to each other and can exchange keys
in a secure way.

Main components of the TPM are Attestation Identity Key (AIK), Endorse-
ment key (EK), Platform Configuration Registers (PCRs), Random Number
Generator (RNG), and Direct Autonomous Attestation (DAA). The EK is im-
plemented as X.509 certificate with its private key stored in the TPM. The TPM
protects the private key and prevents from exporting it elsewhere. The EK is
used for establishing that AIK keys were generated in the TPM. AIK is also
in the form of a X.509 certificate, it is used for providing identification of the
TPM to other parties. PCRs are special registers that can hold hashes, hashes
can be changed only by authorized users or with the knowledge of the previous
value from which the previous hash was computed. DAA is a protocol which
can securely and anonymously transfer data from remote TPM’s PCRs.

5. Service Integrity and Versioning
Using images of hardware virtual machines gives us also another advantage,

which is easy checking for software integrity and correct version. The HVM
image can be checksummed (with MD5 or other checksum) and that checksum
can be compared to a value obtained from a trusted source. This solves the
problem with versioning—a service consumer can be sure that a service is
identical to a proven and tested version of the service, and was not silently
upgraded by its provider, possibly removing some known bugs and introducing
new ones.

The ability to check that a service was not modified is crucial for obtaining
reproducible results, which is important in biomedicine. It is very hard or
maybe intractable to ensure that a remotely accessed service was not modified,
because the only thing that a service consumer has is the service’s contract,
its interface. Its implementation is hidden and can be replaced anytime. The
separation of the interface and implementation is a defining feature of services.
But without access to the implementation, the service consumer cannot check
that the implementation was not modified, and thus reproducibility of the results
cannot be ensured.

When using downloadable services in hardware virtual machines, the service
consumer has the service implementation wrapped inside the HVM, so a simple

Sealed Grid with Downloadable Services 89

checksum can verify that a service was not modified. In the knowledge grid
with potentially many highly specialized data processing services, that we are
working on, users need to know an exact version of a service, because they
select services based on reputation of the services. Also, it is a known practice
in computational chemistry, that some bugs in software are never corrected,
even when everybody knows that the bugs are present, so that the results of
computations are comparable. The reproducibility of results is clearly more
important to such users than the correctness of the results. Knowing that a
service was not modified is then a natural requirement.

Secure Credential Delegation to Services
In our architecture the images of hardware machines will be available from

specialized repositories maintained by skilled administrators and users who
have the expertise necessary to install the system and application inside the im-
ages. The images and their corresponding description will be cryptographically
signed using the private key of the maintainer who produced the image. Such
a precaution will make it possible for the end users to verify integrity of the
retrieved image and also to identify its producer if necessary. Thus, a user who
specified her personal preferences can choose an image produced by a preferred
image provider in an easy and trusted manner.

Once the image is downloaded from the repository and verified it can be
installed into a virtual machine. After loading into the machine it is necessary
to personalize it using the identity of the user. In order to provide a secure yet
easy way to personalize multiple virtual machines we will use the key migration
mechanism supported by the TPM specification. The migration protocol makes
it possible to transfer sensitive data (e.g. private keys) between two TPMs in a
secure way without revealing the content to any third-party entity who has access
to communication, including administrators of the TPM machines. Using the
migration process it is possible for a user to send her private keys to the virtual
machines where she prepared the images.

Once started all the services will use the user’s identity and thus they will be
able to work on the user’s behalf. The user has full control over the location
where her private key was installed and the migration process ensures the cre-
dentials cannot be intercepted during the transition. Such an approach can be
viewed as a viable alternative to the wide-spread use of proxy certificates that
do not provide the needed control over their use to their owner once they are
delegated to a service.

6. Sealing an open environment using TPM
The notion of a sealed grid was motivated by the possibility of having a con-

trolled environment consisting only of trusted machines inside an organization,

90

which are not connected to any outside network. In this case the data are only
processed by the internal machines and cannot leak outside the organization.
If we relax slightly the strict requirements on private processing and want to
allow the data to be handled in more open environment we could benefit from
the remote attestation mechanism that is one of the crucial components of the
trusted computing. Using this mechanism it is possible to check integrity of
any remote machine using the TPM as well as verify applications run by the
machine. In our architecture the machines would run an HVM instance and
the user deploying images of virtual machines would first verify the HVM is
correct and has not been tampered with and only then install the image on the
machine.

7. Conclusion
We have presented a grid solution for domains where data confidentiality,

results reproducibility and defined responsibility for data processing are the
important requirements, like in the domain of biomedicine. The solution is
based on deploying services in hardware virtual machines, whose images can
be packaged and downloaded over the Internet. The downloaded images can
be put into a sealed environment with a copy of the part of a grid infrastructure
that is needed for data processing. No data can escape from such a sealed
environment, so the data confidentiality is guaranteed.

The downloaded images of virtual machines with grid services can use user
credentials to sign produced data thanks to hardware TPM chips, which store
private keys and are even able to delegate user credentials from one computer
to another one in a secure way, that even administrators of the machines cannot
intercept them.

8. Acknowledgments
This research is supported by a research intent “Optical Network of National

Research and Its New Applications” (MSM6383917201) and research project
“MediGrid – methods and tools for GRID application in biomedicine” (Czech
Academy of Sciences, grant T202090537)

References

[1] Kuba M., Krajı́ček O., Lesný P., Vejvalka J. and Holeček Tomáš. “Grid Empowered Sharing
of Medical Expertise”, Proceedings of HealthGrid 2006, IOS Press, Amsterdam, NL, 2006.
ISBN: 1-58603-617-3

[2] Foster I. “What is the Grid? A Three Point Checklist”, GRIDToday, July 2002

[3] Bocchi L., Krajı́ček O., Kuba M.: Infrastructure for Adaptive Workflows in Semantic Grids.
Proceedings of the first CoreGRID Integration Workshop. Pisa : University of Pisa, 2005.
p. 327-336. 2005, Pisa, Italy

Sealed Grid with Downloadable Services 91

[4] Kuba M., Krajı́ček O., Lesný P., Holeček T.: Semantic Grid Infrastructure for Applications
in Biomedicine. DATAKON 2005 - Proceedings of the Annual Database Conference: 2005,
p. 335-344. 2005, Brno, Czech Republic, ISBN 80-210-3813-6

[5] Figueiredo R., Dinda P. and Fortes J. “A case for grid computing on virtual machines”, In
proceedings of Distributed Computing Systems, 2003, pages 550-559.

[6] Trusted Computing Group,
http://www.trustedcomputinggroup.org.

[7] Trusted Computing Group. “Trusted Platform Module Main Specification, Part 1: Design
Principles, Part 2: TPM Structures, Part 3: Commands”. October 2003, Version 1.2, Revision
62, http://www.trustedcomputinggroup.org.

[8] Procházka M., “Usage of TPM under the Xen”. DESY, Hamburg, Germany : 2007

III

PROGRAMMING WITH SOFTWARE COMPONENTS

INTEROPERABILITY OF GRID COMPONENT
MODELS: GCM AND CCA CASE STUDY∗

Maciej Malawski† and Marian Bubak
Institute of Computer Science and ACC CYFRONET
AGH University of Science and Technology
Al. Mickiewicza 30, 30-059 Krakow, Poland
malawski@agh.edu.pl

Françoise Baude, Denis Caromel, Ludovic Henrio and Matthieu Morel
INRIA Sophia Antipolis – CNRS – Univ. of Nice Sophia Antipolis
2004, Route des Lucioles, BP 93 FR-06902 Sophia Antipolis, France
francoise.baude@inria.fr

Abstract This paper presents a case study in the generic design of Grid component models.
It defines a framework allowing two component systems, one running in a CCA
environment, and another running in a Fractal environment, to interact as if they
were elements of the same system. This work demonstrates the openness of both
Fractal and CCA component models. It also gives a very generic and exhaustive
overview of the interaction strategies that can be adopted to allow full integration
of these two models, like strategies for reusing in Fractal single components
from the CCA world and connecting a Fractal system to an already running CCA
assembly. Finally, it presents the implementation and results of investigation
of interoperability between two given component frameworks: MOCCA and
ProActive. In generall, this paper presents the key concepts useful to make any
two component models interoperate.

Keywords: Component model, interoperability, CCA, Fractal, GCM, MOCCA, ProActive

∗This work was supported by EU IST CoreGRID project and Polish grant SPUB-M.
†Support from the Foundation for Polish Science is kindly acknowledged.

96

1. Introduction
Component model may be considered as one of the most appropriate para-

digm for programming Grid applications [7]. It allows to tackle the problem of
complexity originating from an application and an infrastructure by providing
such features as composition by interfaces, support for flexible deployment and
reconfiguration mechanisms.

There are few component models which address the Grid applications: the
most important ones are Common Component Architecture (CCA) [3], Grid
extensions of CCM (CORBA Component Model) [10] and Grid Component
Model (GCM) [1] developed recently by CoreGRID project. GCM is based
on the Fractal [5] and is being developed as a standard component model
for programming the Grid. To achieve this goal, the abilities to interoperate
with existing applications and to integrate existing "legacy" components are
required. The CCA model which has been developed by the HPC community
for several years, now has a number of implementations (frameworks) such
as CCAFFEINE [3], XCAT [9] and MOCCA [11], and scientific components
are expected to be available soon. Therefore, the problem of interoperability
between GCM and CCA becomes an interesting and important issue.

In this paper, we address the problem of interoperability between GCM and
CCA component models. We focus on the base component model of GCM,
namely Fractal, as it defines the fundamental properties of the components
and their interactions. We start with an analysis of both models to identify
similarities and differences between them. Next, we discuss integration strate-
gies and propose the solutions to the identified problems, such as issues with
typing system. We propose a generic and framework independent solution,
which is based on the adapter (wrapper) design pattern. In order to validate
the approach, we have developed a prototype, which allows ProActive (a GCM
prototype) [4] and MOCCA (a CCA implementation) [11] frameworks to in-
teroperate. The extensions to Fractal introduced in GCM, such as collective
interfaces and autonomic controllers are left for the future work.

2. Background
Interoperability can be defined as an ability of two or more entities to com-

municate and cooperate despite differences in the implementation language, the
execution environment, or the model abstraction [14]. Today, a popular solution
for interoperability between components is Web Services where standardized
protocols based on XML provide the common language for applications to
communicate [6]. This has been successfully applied also to high-performance
modules like ASSIST modules, wrapped as GRID.it components [2].

Interoperability has been outlined as a requisite for the Grid Component
Model: a realistic programming model, in the context of heterogeneous sys-

Interoperability of Grid Component Models: GCM and CCA Case Study 97

tems, component frameworks and legacy software, must be able to interoperate
with existing component frameworks and allow applications to be built from
a mixture of various kinds of components. Naturally, the GCM proposes to
achieve general component interoperability through standardized web services.
Besides of it there are alternative interoperability approaches: our idea is to
introduce mediators and adapters to build up an ad-hoc interoperability layer
between selected component frameworks without superimposing on them an-
other general-purpose interoperability framework (like a CORBA bus, or a
meta-component model implemented on top of some selected existing compo-
nent frameworks [13]). This alternative approach is undertaken in the work
described in this paper.

3. Overview of CCA and GCM
The CCA[3] specification is defined using the Scientific Interface Descrip-

tion Language (SIDL) [8] which specifies the core entities: components, ports
and a framework. Ports are the external interfaces of a component and they must
extend the Port interface. A component declares both its client and server inter-
faces called uses and provides ports respectively. The framework is represented
to the component by the Services interface, which is used by the component
to register its ports. This interface also defines a getPort() method which
allows a component to obtain a reference to the uses port in order to invoke
methods on this client interface. The external interface exposed by the frame-
work to the application developers is called BuilderService. It provides
methods for creating/destroying component instances and connecting/discon-
necting their ports. Besides of these core interfaces, CCA also specifies optional
ports, such as component repository, connection event service, service registry
and parameter ports, intended to facilitate interoperability between different
frameworks.

Fractal is a hierarchical component model that provides introspection and
intercession; it is easily extensible [5]. There are two kinds of components
in Fractal: primitive components which are black boxes, and composite com-
ponents that are composed of other components and can be used to build up
yet other composites. Fractal enforces a clear separation between functional
and non-functional aspects; non-functional features are provided by controllers,
and encapsulated in a membrane. This model provides reconfiguration (adding,
removing, binding, and unbinding) of the functional content of composites com-
ponents, in order to support adaptivity of the component systems.

The GCM is a component model targeted at Grid computing, which focuses
on the following extensions to the base Fractal model:

A deployment paradigm based on virtual nodes allowing to specify a
logical deployment of a system, and a physical deployment separately.

98

Support for several communication patterns. First, asynchronous method
calls is considered as the default semantics, and other semantics as stream-
ing and event-based communication may be supported. A major contri-
bution of the GCM is to standardize multicast and gathercast interfaces
that allow 1-to-n and n-to-1 communications.

Support for non-functional adaptivity and autonomicity. The GCM spec-
ifies how to design non-functional aspects in a component way, and thus
allow the reconfiguration of the non-functional features of a component
system. Finally, a set of autonomic controllers is also standardized and
they allow component to adapt themselves in a much hierarchical and
autonomous way.

4. Comparison of CCA and Fractal
Both CCA and Fractal component models enforce a separation between inter-

face and their implementation, allow composition of applications by connecting
client and server ports of components, and provide some reflective capabilities.

The basic and obvious similarity is that the functional interfaces of compo-
nents in both models are equivalent, e.g. when considering Java implementa-
tion, both Fractal and CCA components are Java classes implementing their
functional interfaces and some additional interfaces imposed by the specifica-
tion. Interaction between components in both models is based on the method
invocation on the client interface which is connected to a server counterpart.

The first conceptual difference is the way the components in both models
interact with the outside world. In CCA, a component is given an explicit
reference to the framework, and the component itself has the “initiative” to
actively inform the framework about its internals, i.e. ports (interfaces). On the
other hand, the Fractal model assumes that the component has a passive role in
the introspection process and can reveal its internals on demand.

The second difference is the way the component interfaces are connected.
In CCA the BuilderService is responsible for creating the connections and
the framework manages them, while the component is only required to invoke
getPort() method to get a valid reference to the port before using its client
interface. In Fractal, the connection is managed by the component, by imple-
menting a BindingController interface.

ContentController in Fractal does not have its counterpart in CCA be-
cause CCA does not support composite components as explicitly as Fractal.
Also, there is no standard life cycle controller mechanism.

Although CCA does not distinguish non-functional interfaces (controllers)
there are some standard ports, which are optional. One of them is is a Basic-
ParameterPort which can be used to read and modify arbitrary properties of
a component, analogously to Fractal Attribute controller.

Interoperability of Grid Component Models: GCM and CCA Case Study 99

The mechanism of component creation is also different in both models. The
method for creating instances in CCA is included in the BuilderService port,
whereas Fractal defines the Factory interface for this purpose. In both cases
the creation mechanism may be implementation specific, and depends on the
actual framework.

Although there is no standard Application Description Language (ADL) for
CCA components, the BuilderService provides all the required functionality
to construct such a description. The Application Factory project defined the
XML-based ADL for XCAT [9], whereas CCAFFEINE [3] defines its own
scripting language for composing applications.

5. Overcoming Typing and ADL Issues
One of the main issues in this work is to deal with the fact that Fractal (and

GCM) components have an immutable type (i.e. a set of exported interfaces
cannot evolve dynamically) whereas CCA component can subscribe new ports
to be exported at any time. More precisely, in CCA, each component can register
a port at any moment, so there is no concept such as a component type. On
the contrary, in Fractal, except collection interfaces which can be instantiated
several times along the life of the component, the type of a component and the
set of its interfaces is fixed upon its instantiation. The “static” typing of Fractal
components can be used to verify the correctness of the bindings, according to
interface types. We propose the following ways of solving the typing issue:

1 Generate a Fractal component automatically upon instantiation of a CCA
component, i.e. to use only the port declared by the setServices
method. This allows to build a Fractal component automatically without
any additional code (no ADL need to be specified) but prevents adding
new ports after component initialization.

2 A programmer should specify the ADL for the CCA component. This
means more manual effort, but no set of interfaces has to be automatically
inferred. One of the main advantages of this approach is that some ports
provided during the component lifetime could be specified as Fractal
optional interfaces.

3 An improvement of the previous approach consists in generating the ADL
specification upon a CCA component instantiation (not necessarily the
real one) and then reuse the ADL inferred in the scenario 2 above. The
user may then modify the ADL generated (to add some of the ports that
will be provided during the component lifetime).

4 One can also generate an ADL from available CCA description (e.g.
as SIDL [8]). The CCA script language (used by frameworks, but not

100

standardized) may be reused to declare which ports of the CCA compo-
nent/assembly should be exported.

We have chosen the second approach as it seems the most general, it enables a
very good understanding of the differences between CCA and Fractal, and it is
centered on the interaction between the two frameworks. Moreover, it can be
automatized later on with solutions 3 and 4.

In the all aforementioned approaches a mapping between exported CCA
ports and GCM interfaces is required. More precisely, CCA ports are identified
by the component name and port name, and this must be mapped to Fractal
interfaces defined in the ADL. In other words, we need to define a bijection
between CCA ports (i.e., component name + port name) and Fractal interfaces
as it is defined in the ADL.

6. Integration Strategies
We separate CCA integration inside a GCM component system into two

approaches: the encapsulation of a single CCA component (Section 6.1) and of
a complete CCA system, consisting of several CCA components (Section 6.2).

Along the life time of a CCA-Fractal composition, the integration framework
must support: (a) communication from the Fractal component system to the
CCA system; (b) communication from the CCA system to Fractal components;
(c) plugging or unplugging of Fractal interfaces to the CCA system (both on
the client and on the server side); (d) exportation of new CCA ports if this is
supported (see Sec. 5).

Additionally, we are looking for solution that are as general as possible, i.e.
independent of CCA framework implementation as much as possible.

6.1 Simple Integration
We first focus on a simple case: how to encapsulate a single CCA component

into a Fractal one?
The proposed solution enables the creation (instantiation) of a CCA compo-

nent as a primitive Fractal component in a single address space. It relies on a
wrapper that encapsulates a CCA component, and exposes cca.Services in-
terface to a CCA component (see Fig. 1). Before instantiation we should know
the type of a component in order to define the Fractal type of the component;
this might be obtained from a provided ADL description.

In practice, the wrapper stores the references to bound interfaces and pass
them to getPort() method. All the communication is done by a Fractal
framework (no need to have any CCA framework running at all – the wrapper
will constitute a mini-framework for that component).

Interoperability of Grid Component Models: GCM and CCA Case Study 101

Figure 1. Integration of a single CCA
component into a Fractal one

Figure 2. Interoperability between CCA
and Fractal components

6.2 Real Interoperability
In this case CCA components are created in their own framework and they

are connected to Fractal components running in their framework.
Complete interoperability between two frameworks requires instantiation of

a whole CCA assembly, and ability to interact with it from a Fractal framework
as if it was a Fractal composite component. In this case, we have a CCA
component or a set of CCA components which are created and connected among
themselves by a CCA framework (e.g. MOCCA). So, we wrap the component
assembly as a Fractal component in such a way that it can be connected to other
Fractal components.

The solution we propose is based on a wrapper which adds a Membrane to a
CCA assembly. The wrapper should interact with the CCA framework only via
BuilderService external interface (obtained in framework dependent man-
ner). The wrapper is given the mapping between CCA system ports and external
Fractal ports as discussed in Sec. 5 and using this information it creates Glue-
Ports as CCA components (using BuilderService for each of the exported
ports). The implementation of a GluePort is framework specific, and translates
the Fractal invocations to CCA invocations and reversely. The GluePorts ex-
pose Fractal interfaces to the outside world, and they can be connected (bound)
to other Fractal components using BindingController and Component in-
terfaces of the wrapper. The wrapper uses the BuilderService to con-
nect exported CCA ports to corresponding GluePorts using CCA framework,

102

Figure 3. Wrapping an assembly of CCA components running in MOCCA framework as
composite Fractal/ProActive component

so the communication between CCA component assembly and GluePorts is
handled by the CCA framework.

In other words, the Wrapper component is both a CCA and a Fractal com-
ponent. Although Fig. 2 shows the CCA system “inside” the wrapper, it is
possible also to see the Fractal system from the CCA perspective as “wrapped”
one, so the solution is symmetric.

7. Implementation - ProActive and MOCCA
In order to verify the proposed above solution a prototype using Java-based

ProActive and MOCCA implementations was developed.
Integration of a single component was realized as planned in Sec. 6.1. A

wrapper which encapsulates a CCA component and which exposes Services
interface to a CCA component is created by the Fractal framework. The wrapper
instantiates the CCA component as a local object and it invokes setServices
(this) on a CCA component, passing the reference to itself. The CCA com-
ponent registers its uses and provides ports, and consequently the wrapper can
create direct (local) bindings to exported CCA ports.

In the real interoperability scenario we assume that there are CCA compo-
nents running in a framework and connected using a mechanism specific to this
framework (e.g. a script, or Java API), forming the existing CCA assembly.
Fig. 3 shows the example of wrapping an assembly of three CCA components
which provides one port of type A and uses one port of type B. The scenario
consists of the following steps:

1 The Fractal framework creates a CompositeWrapper Component.

Interoperability of Grid Component Models: GCM and CCA Case Study 103

2 The wrapper implements a CCAControllerwhich is used to pass the de-
scription of the CCA assembly to the wrapper. This description includes
all parameters allowing to connect the external ports of the assembly.

3 The reference to BuilderService is returned by a framework-specific
bootstrap method. In the case of MOCCA the reference is obtained from
the URI to Builder pluglet.

4 The type of Wrapper Component is obtained from an ADL or Fractal
API invocations. Provided with the mapping from CCA ports to Fractal
interfaces (Sec. 5), the wrapper creates the GluePorts:

(a) For each Provides port of wrapped CCA assembly one ServerGlue
port is created. It is created as a primitive Fractal component with
one server interface and it has one attribute controller called Wrap-
perAttributes, which is immediately used to pass the reference to
the corresponding CCA provides port (see e.g. ServerGlue A on
the Fig. 3). The ServerGlue component has a MOCCA client code
which delegates the method invocation to the wrapped component.

(b) For each Uses port of the wrapped system one ClientGlue is cre-
ated: it is a primitive one, becoming at the same time the Fractal
and CCA component. It is instantiated in H2O kernel (a container
for MOCCA) and upon creation it launches ProActive runtime to
expose the BindingController (BC). Consequently, ClientGlue can
be connected to CCA components on its server side and to Fractal
interfaces on the client side (see ClientGlue B on the Fig. 3).

5 The wrapper uses the BuilderService to connect the exported CCA
uses ports to corresponding GluePorts.

6 CCAController connects all Glue ports to the composite Wrapper using
standard Fractal bindings.

7 Fractal BindingController of a composite wrapper may be used to connect
exported ports to other interfaces of the Fractal application.

It should be noted that both Client and Server Glue components are conceptually
symmetric and their role is to translate invocations from one framework to the
other. It was the implementation choice to create a Server Glue as ProActive
component which includes the MOCCA code, whereas a Client Glue is created
as MOCCA component with an “embedded” ProActive one (Fig. 3).

8. Conclusions and Future Work
The analysis of CCA and GCM component models, shows that despite some

differences, it is feasible to integrate components from one model into another

104

framework, as well as to create the glue code which enables inter-framework
interoperability. The prototype functionality has been verified with a number
of examples, including a non-trivial application (simulation of gold cluster
formation [12]) and integrated with the ProActive library.

We observed that if the properties of two different component models can be
well understood, then the generation of wrappers and glue code bridging two
different component frameworks can be generic and thus automated.

Our approach resembles the one adopted in SciRun2 [13] with Bridge com-
ponents acting like our GluePort ones. However, we avoid introducing the
notion of a new (meta) component model and we allow components running in
their native frameworks to interoperate (i.e. not requiring an additional one).

Future work will focus on automatic ADL building, generation of glue at
runtime, investigating advanced features by which GCM extends Fractal model
and performance tests to measure the overhead introduced by glue layer.

References
[1] CoreGRID Programming Model Virtual Institute. Basic features of the grid component

model (assessed), 2006. Deliverable D.PM.04, CoreGRID, http://www.coregrid.
net.

[2] M. Aldinucci et al. Building interoperable grid-aware ASSIST applications via WebSer-
vices. In PARCO 2005: Parallel Computing, pages 145–152, Malaga, Spain, 2005.

[3] R. Armstrong et al. The CCA component model for high-performance scientific comput-
ing. Concurr. Comput. : Pract. Exper., 18(2):215–229, 2006.

[4] F. Baude et al. From distributed objects to hierarchical grid components. volume 2888 of
LNCS, pages 1226 – 1242. Springer, 2003.

[5] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani. The FRACTAL
component model and its support in Java. Softw., Pract. Exper., 36(11-12):1257–1284,
2006.

[6] I. Foster. Service-oriented science. Science, 308(5723):814 – 817, 2005.
[7] V. Getov and T. Kielmann, editors. Component Models and Systems for Grid Applications.

Springer, 2005.
[8] S. R. Kohn et al. Divorcing Language Dependencies from a Scientific Software Library.

In Proc. of the 10th SIAM Conf. on Parallel Processing for Sci. Comp., Portsmouth, USA,
Mar. 2001. SIAM.

[9] S. Krishnan and D. Gannon. XCAT3: A Framework for CCA Components as OGSA
Services. In Proc. Int. Workshop on High-Level Parallel Progr. Models and Supportive
Environments (HIPS), pages 90–97, Santa Fe, New Mexico, USA, Apr. 2004. IEEE.

[10] S. Lacour et al. Deploying CORBA components on a computational grid. volume 3083
of LNCS, pages 35 – 49. Springer, 2004.

[11] M. Malawski et al. MOCCA – towards a distributed CCA framework for metacomputing.
In Proceedings of the 10th HIPS Workshop in Conjunction with IPDPS. IEEE, 2005.

[12] M. Malawski et al. Experiments with distributed component computing across grid bound-
aries. In Proceedings of the HPC-GECO/CompFrame workshop in conjunction with
HPDC 2006, Paris, France, 2006.

Interoperability of Grid Component Models: GCM and CCA Case Study 105

[13] S. Parker et al. Integrating component-based scientific computing software. In
M. A. Heroux et al., editors, Frontiers of Parallel Processing For Scientific Computing,
chapter 15. SIAM, 2005.

[14] A. Vallecillo et al. Component interoperability. Technical Report ITI-2000-37, Depart-
mento de Lenguajes y Ciencias de la Computacion, University of Malaga., 2000.

A COMPONENT PLUGIN MECHANISM
AND FRAMEWORK FOR APPLICATION
WEB SERVICES

Rainer Schmidt, Siegfried Benkner, and Maria Lucka
Department of Scientific Computing
University of Vienna
Nordbergstrasse 15/C/3
1090 Vienna, Austria
rainer@par.univie.ac.at

Abstract We present the architecture and application of VGE-CCA, a distributed com-
ponent framework that is layered atop a Web service based Grid environment.
The framework implements the CCA component model and utilizes the Vienna
Grid Environment (VGE) as underlying middleware. In this paper, we intro-
duce the concept of application specific component libraries that can be easily
plugged into the container. Moreover, we report work on coupling distributed
and concurrently running application components that are dynamically assem-
bled and executed as single application composites by clients. For co-scheduling
the various application components, the system makes use of advance resource
reservation as provided by the VGE QoS module. Furthermore, we discuss the
component and composition model as well as its application to a service-oriented
architecture.

Keywords: Grid, Web Services, Service-oriented Architecture, Component Architecture

108

1. Introduction
Grid technology provides tools and infrastructures for the coordinated shar-

ing of computational resources that are physically distributed, spanning multi-
ple administrative domains. The adoption of Web service technology for Grid
computing environments has been a major research issue in this area, providing
defined access mechanisms for distributed resources based on Web service stan-
dards like XML, SOAP, and WSDL. Service-based Grids typically comprise of
various collaborating services providing capabilities like security, information,
data or resource management as described by the OGSA [8] specification. An
important challenge in this area is the development of software engineering
methods for Grid applications that are built upon a multitude of services as well
as programming models that hide the complexity of the underlying environment.

Component technology provides a powerful way for constructing complex
software systems by decoupling software implementation from application as-
sembly. Several successful frameworks for developing distributed scientific
application exists (e.g. XCAT3 [13], ProActive [2], ICENI [9], Paco++ [15],
MOCCA [14]) implementing and extending a variety of component models in-
cluding Corba, CCA, Fractal, or Web services. The Common Component Ar-
chitecture [5] (CCA) specification defined by the CCA Forum [6] is specifically
designed for the development of large scale scientific applications. The archi-
tecture focuses on the integration of existing scientific software libraries into a
framework for component creation, introspection, and composition, which fits
well into the Web/Grid services model as described in [11].

In this paper, we present the architecture and application of VGE-CCA, a
distributed CCA implementation that allows to develop, deploy, and assem-
ble component-based high performance applications for a Web service based
Grid environment. The framework builds upon the Vienna Grid Environ-
ment [4] (VGE) - a Grid infrastructure for secure, automatic and QoS aware
provision of compute-intensive applications running on parallel hardware over
standard Web service technology. We introduce a mechanism allowing to ex-
tend VGE components using application specific software libraries that can be
easily plugged into the container. Furthermore, we report work on coupling
distributed and co-scheduled application components that are dynamically as-
sembled by clients and run as single application composites. The following
sections provide an overview of the architecture and implementation of the
VGE-CCA framework as well as the underlying Grid middleware. We discuss
the component and composition model as well as its application to a service-
oriented architecture. Finally, we present conclusions and future work.

A Component Framework for Application Web Services 109

2. The VGE Grid Infrastructure
2.1 Architectural Overview and Technologies

The Vienna Grid Environment [4] is a service-oriented Grid infrastructure
for the on-demand provision of HPC applications as Grid services and for
the construction of client-side applications that access Grid services. The VGE
service provision framework is based on a generic application service model and
automates the provision of HPC applications as services based on standard Web
service technology such as SOAP, WSDL, WS-Addressing, and WS-Security.
VGE supports a flexible QoS negotiation model where clients may dynamically
negotiate QoS guarantees on execution time and price with potential service
providers. A VGE Grid usually comprises multiple services and clients, one
or more service registries for maintaining a list of service providers and the
services they support, and a certificate authority for providing an operational
PKI infrastructure and end-to-end security based on X.509 certificates. VGE is
being utilized and evaluated in the context of the EU Project GEMSS [3] and
@neurist [1] which develop Grid infrastructures for medical simulation services
and data access.

2.2 Services provided by VGE Containers
VGE generic application services are configurable software units that provide

common operations for remote job management, data staging, error recovery,
and QoS negotiation.

The file handling service provides operations for uploading and download-
ing input/output data based on file transfer via SOAP attachments. Support for
direct data exchange between services is provided by corresponding push and
pull operations. The job execution service provides operations for launching
and managing remote jobs by interfacing with a compute resource manager.
VGE does not provide means for clients to send job scripts to the server and
only allows application providers to control which scripts are to be executed
on the respective machines. The QoS negotiation service enables clients to
dynamically negotiate with VGE services on a case-by-case basis on various
QoS guarantees such as execution time and price. Resulting QoS contracts
between service providers and clients are formulated as Web Service Level
Agreements (WSLA) and go along with advance resource reservations. The
monitoring service generates XML structured data regarding the application
status and information gathered by individual monitoring scripts. The error
recovery service provides support for checkpointing, restart, and migration, if
supported by the application.

110

3. The Component and Composition Model
Scientific component frameworks implement and extend a variety of compo-

nent models including Corba, CCA, Fractal, or Web services. A distinguishing
aspect of existing component frameworks is the way they implement and ex-
ploit the various concepts of the component model. Another important design
issue is the integration and leverage of a component framework with respect
to the capabilities of the underlying system architecture. In the following, we
briefly describe the component model and mechanisms implemented by the
VGE-CCA framework.

3.1 Service-Oriented Architecture
The VGE-CCA component framework provides an abstraction layer and

functionality that resides atop a Service-Oriented Architecture (SOA). This
layer allows the construction of distributed Grid applications based on CCA
mechanisms and transparently utilizes the underlying Web services layer. A
SOA provides essential benefits such as loose coupling, location and imple-
mentation transparency. Well defined sequences of service invocations used
to control remotely executing applications can be specified and executed using
workflow representation and enactment techniques. VGE-CCA implements
mechanisms that extend the service-oriented programming model allowing to
directly interlink Web service components along accepted and provided inter-
faces, independently from workflow orchestration. The approach is powerful,
enhancing VGE towards dynamic component interaction, data-flow, and the
coupling of co-scheduled application components.

�

� � ��

��

���

��� ���

	
����� 	�
�

���� 	�
�

����� ��������

Figure 1. a) Independent Web Service b) RPC-based Component Interaction c) Event-based
Application Coordination

3.2 Handling State and Composition
Figure 1 (a) depicts a Web service viewed as an encapsulated piece of soft-

ware providing service through a typed interface (provides port). The software
component may expose one or more interfaces, each defining a contract con-
taining a set of operations together with binding information used by clients to

A Component Framework for Application Web Services 111

invoke the service over a network. VGE-CCA extends this model by applying
the concept of port dependencies allowing a Web service to express depen-
dencies on services provided by other components based on defined interfaces
called uses ports. A connection between two components, drawn by a client
application developer, results in placing a handle to the selected service port
into the connection table of the component requesting a remote port.

If a service maintains state, it is essential to establish a context between
the requestor and the actual resource represented by the component. The way
the component framework handles component instantiation is therefore an im-
portant aspect. In the context of Grid and Web services, instantiation can be
realized by providing an application factory service as pointed out by Gannon
et al. [10]. In VGE, we pursue a slightly different approach by maintaining a
conversational identifier that is mapped to the respective application instance
created and managed by the application service. In our model, stateless com-
ponents may provide services (e.g. security) to other components but usually
do not exhibit dependencies.

3.3 Types of Composition
VGE services encapsulate parallel applications and provide generic inter-

faces for controlling the execution of a component (scheduling, executing, mon-
itoring) as well as operations for handling the data-flow between components
(upload, download, data push). VGE services are stateful and multi-threaded
creating a client context by maintaining a conversational identifier stored within
the SOAP message header using WS-Addressing. The VGE-CCA framework
provides libraries and services that extend the application services with the
required mechanisms for component-based composition. Moreover, the frame-
work provides a plugin mechanism that supports the development and de-
ployment of individual application component libraries (clibs) (Section 4.1.1)
encapsulating application specific logic, ports and dependencies. The current
VGE-CCA implementation supports different types of composition which are
explained in the following paragraphs:

Sequential Data-Flow: VGE components support data-flow by port con-
nections allowing to directly stage i/o files between services (Figure 1 (b)). In
such workflow scenario, the output of a computation typically serves as input
for the following ones, for example an image reconstruction that is followed
by a visualization. Data connections are explicitly controlled by the user and
invoked through a corresponding push operation. A component may have data
connections to multiple services which can be monitored and executed concur-
rently.

112

Coupled Parallel Applications: The clibs plugin mechanism provides the
required functionality to transform applications running on different HPC
computing resources into actively interacting components which can then be
launched by clients as one composite application. The application compo-
nents communicate through typed port-connections and may be coordinated by
asynchronous message exchange using the signal interface (Figure 1 (c)). An
example using distributed Ant colony optimization is described in section 4.1.1.
The event mechanism is currently implemented as a one-to-many CCA port con-
nection. For future versions, we plan to incorporate a notification-based system
like WS-Notification. For co-scheduling concurrently running component in-
stances, we utilize scheduling and advance resource reservation as provided by
the VGE QoS module.

Stateless Service Dependencies: Within VGE Grids, stateless services are
typically “supporting infrastructure elements” providing services like security
or information. Infrastructure services are often directly utilized by the comput-
ing elements and usually do not require any session or scheduling mechanisms.
A dependency on an infrastructure service can be explicitly visible to a client
but is usually implicitly handled by the component and configured descriptively
at service deployment time (e.g. auditing, security).

4. The VGE-CCA Component Framework
VGE-CCA implements a distributed component framework on top of a Web

service based Grid of HPC application services as well as general infrastructure
services such as security and information. A key design goal of VGE-CCA
was the preservation of the service-oriented architecture and the provision of
component extensions, without conflicting the Web services model. VGE-
CCA provides a set of libraries that can be used to extend Web/Grid services as
well as a set of infrastructure elements providing services to components and
client runtimes. The software design allows to optionally install the VGE-CCA
distribution without requiring to change code of existing services and thereby
preserving the original interfaces and functionality. On the client-side, VGE-
CCA provides support for component based application construction as well as
workflow steering and execution.

4.1 Coupling Co-Scheduled Application Components
4.1.1 Pluggable Component Libraries (CLIBS). VGE-CCA provides
a mechanism that allows to create individual software libraries that are specif-
ically tailored to an underlying application. The component libraries (clips)
can be plugged into VGE application services and are automatically deployed
with the service. By default, VGE-CCA components provide interfaces for

A Component Framework for Application Web Services 113

Figure 2. Design of a VGE-CCA component

application, data, and QoS management (cf. VGE) as well as a Builder Service
for component creation, and connection (cf. CCA). Clibs are used to add in-
dividual ports, dependencies, or application specific logic to services running
VGE-CCA. Moreover, the plugin mechanism allows to extend the behavior
of existing services at defined entrance points, for example to trigger an ac-
tivity right before/after a certain file is uploaded to the service. Application
libraries are developed by subclassing a predefined component class that pro-
vides the mechanisms and handles required to augment the service and inject the
desired behavior. The individual component libraries are descriptively config-
ured and automatically loaded into the container at deployment time. Figure 2
shows a schematic design of a VGE-CCA component including VGE and CCA
libraries as well as application and service specific clibs. Coordination among
co-scheduled VGE components is distributed and currently handled using a
simple signaling mechanism. The current implementation therefore extends
the port connection mechanism towards supporting connections from one uses
to n provides ports. Message generation and distribution is handled transpar-
ently by the framework.

4.1.2 Example: Ant Colony Optimization. Consider an application
using a parallel, savings-based ant colony optimization (ACO) algorithm to
solve a vehicle routing problem [7]. The application implements a multi-colony
approach where several colonies of ants cooperate in finding good solutions.
On the fine-grained level, each colony of ants is partitioned into n (number of
processors) subcolonies that share the same pheromone matrix. The goal of
parallelizing the ACO algorithm is twofold: to speed up the execution and to
improve the solution quality. In order to aggregate multiple computing clusters,
the application has been distributed using a custom ant component library. The
VGE component was extended in order to start a daemon that keeps track of
the current local optimum, written to a file by the application. If a colony

114

calculates a better solution than the global optimum the current solutions and
parts of the pheromone information are multicasted to connected components
using the signal() interface. The coupling between the individual ant colonies
is loose allowing colonies to be added or removed during runtime.

The VGE-CCA client API targets to provide useful abstractions that allow
component-based application construction by hiding the complexity of the dis-
tributed system. Components are co-scheduled using QoS constraints at cre-
ation time resulting in an advance resource reservation as provided by the VGE
QoS module. Connections within composites are peer-based and interaction
driven, which reduces complexity at the workflow level. In the case of ACO, the
client developer constructs an application by interconnecting multiple distrib-
uted ant colony components. The experiment can then be run based on a single
composite entity. The code snippet in Listing 1 shows how the client API is
used to create a (simple) ACO composite. Operations for runtime steering and
monitoring provided by VGE application services (e.g. start(), getStatus()) can
be used likewise with the application composite.

//Listing 1: Ant client snippet
VgeComponent ant1 = ComponentFactory.create(coid1); //...
VgeComponentGroup antComposite =
new VgeComponentGroup(ant1, ant2, ant3);

antComposite.upload(vrp_infile);
antComposite.start(); //...

4.2 The Software Distribution
In the following, we provide a short description comprising the basic building

blocks of the VGE-CCA distribution. For a detailed description of implemented
CCA mechanisms the reader is referred to [16].

A library package implementing the service-side CCA framework (Fig-
ure 2) is used to equip the application service with additional interfaces for
remote component registration (component interface), creation, and connec-
tion (builder interface). Additionally, the Web service is provided with a local
CCA services library, a connection table, as well as the component plugin
mechanism used to create and insert individual application components. The
CCA libraries are in general used by the application component but may also
be used by the individual service implementation to locate and directly connect
to infrastructure services, e.g. auditing, or certificate revocation list retrieval.

A component registry realized as Web service implements the remote por-
tion of the CCA services interface. Components register the ports they provide
as well as dependencies on other components by descriptors containing the
required information for discovering and utilizing the component (e.g. inter-
face descriptors, proxy class, associated properties). Moreover, a provides port
may also be associated with a proxy implementation that can be uploaded to

A Component Framework for Application Web Services 115

the proxy registry and dynamically retrieved by components or clients. The
registry service allows for dynamic service discovery and delivers the infor-
mation required for component introspection (e.g. supported ports, underlying
application, QoS attributes) and for component interaction (component handle,
binding information) back to the requestor.

The programming environment is provided as a versatile Java client API
that supports the creation and execution of distributed applications. Compo-
nents may be described and created based on an unique identifier or an abstract
component description. Applicable services are located and selected at runtime
using the registry service. Client assemblies are created by interconnecting pairs
of compliant uses and provides ports, which results in the establishment of peer
connections between the services. The API is extensible and has a layered de-
sign supporting messaging and security, general programming constructs such
as basic CCA types and mechanisms, as well as specialized application com-
ponents and composites. A negotiation broker service is utilized during the
component creation phase to locate and create components that meet a certain
Quality of Service level. The broker service utilizes the capabilities provided
by the VGE QoS module to negotiate with multiple services on the various
QoS guarantees. The VGE-CCA client environment integrates QoS support by
providing means for qualitatively describing a VGE component. The negotia-
tion and selection of an appropriate component is transparently delegated to the
negotiation broker. A successful QoS negotiation goes along with an advance
reservation of the required resource, i.e. the number of nodes on a cluster within
a certain time frame, which is an essential mechanism used by the framework
to co-schedule coupled application components.

5. Conclusion and Future Work
VGE-CCA serves as a framework for constructing Grid applications from

native application components provided by HPC application services. We intro-
duced a plugin mechanism for application specific component libraries allowing
to specifically tailor VGE services to the underlying application. Furthermore,
we presented mechanisms and an example for coupling co-scheduled applica-
tion components into single composite entities on the client side. The current
VGE-CCA distribution relies on Java and Web services technology. All Web
service interfaces and types are described using XML schema which allows
bindings to clients and components in other programming languages, such as
C++ or Microsoft .Net. For future work, we plan to work on interoperability
with other distributed CCA frameworks, such as XCAT-C++ [12] or Legion-
CCA.

116

References
[1] The AneurIST Project. www.aneurist.org/.

[2] F. Baude, D. Caromel, and M. Morel. From Distributed Objects to Hierarchical Grid
Components. International Symposium on Distributed Objects and Applications (DOA),
Catania, Italy, 2003.

[3] S. Benkner, G. Berti, G. Engelbrecht, J. Fingberg, G. Kohring, S. Middleton, and
R. Schmidt. GEMSS: Grid Infrastructure for Medical Service Provision. Journal of
Methods of Information in Medicine, 44, 2005.

[4] S. Benkner, I. Brandic, G. Engelbrecht, and R. Schmidt. VGE - A Service-Oriented Grid
Environment for On-Demand Supercomputing. In Proceedings of the Fifth IEEE/ACM
International Workshop on Grid Computing, November Pittsburgh, PA, USA, 2004.

[5] D. E. Bernholdt et al. A Component Architecture for High-Performance Scientific Com-
puting. Intl. J. High-Perf. Computing Appl., 2006.

[6] The Common Component Architecture Forum. http://www.cca-forum.org.

[7] K. Doerner, R. Hartl, S. Benkner, M. Lucka. Cooperative Savings based Ant Colony Op-
timization - Multiple Search and Decomposition Approaches, Parallel Processing Letters,
2005.

[8] I. Foster, A. Savva, D. Berry, A. Djaoui, A. Grimshaw, B. Horn, F. Maciel, F. Siebenlist,
R. Subramaniam, J. Treadwell, and J. V. Reich. The Open Grid Services Architecture,
Version 1.0. GGF OGSA Working Group (OGSA-WG), 2005.

[9] N. Furmento, J. Hau, W. Lee, S. Newhouse, and J. Darlington. Implementations of a
Service-Oriented Architecture on Top of Jini, JXTA and OGSI. In Second Across Grids
Conference, 2004.

[10] D. Gannon, R. Ananthakrishnan, S. Krishnan, M. Govindaraju, L. Ramakrishnan, and
A. Slominski. Grid Computing: Making the Global Infrastructure a Reality, chapter 9,
Grid Web Services and Application Factories. Wiley, 2003.

[11] D. Gannon, R. Bramley, G. Fox, S. Smallen, A. Rossi, R. Ananthakrishnan, F. Bertrand,
K. Chiu, M. Farrellee, M. Govindaraju, S. Krishnan, L. Ramakrishnan, Y. Simmhan,
A. Slominski, Y. Ma, C. Olariu, and N. Rey-Cenvaz. Programming the Grid: Distributed
Software Components, P2P and Grid Web Services for Scientific Applications. J. Cluster
Computing, 5(3):325–336, 2002.

[12] M. Govindaraju, M. R. Head, and K. Chiu. XCAT-C++: Design and Performance of a
Distributed CCA Framework. The 12th Annual IEEE International Conference on High
Performance Computing (HiPC) 2005, Goa, India, December 18-21.

[13] S. Krishnan and D. Gannon. XCAT3: A Framework for CCA Components as OGSA
Services. In Proceedings of the 9th International Workshop on High-Level Parallel Pro-
gramming Models and Supportive Environments (HIPS 2004). IEEE , 2004.

[14] M. Malawski, D. Kurzyniec, and V. Sunderam. Mocca - Towards a Distributed CCA
Framework for Metacomputing. In IPDPS ’05: Proceedings of the 19th IEEE International
Parallel and Distributed Processing Symposium (IPDPS’05), page 174.1, 2005.

[15] C. Pérez, T. Priol, A. Ribes. Paco++: A Parallel Object Model for High Performance
Distributed Systems. 37th Hawaii Intern. Conf. on System Sciences (HICSS-37), 2004.

[16] R. Schmidt, M. R. Head, M. Govindaraju, M. J. Lewis, and S. Benkner. Design and
Implementation Choices for Implementing Distributed CCA Frameworks. in GECO-
COMPFRAME06: Workshop HPC Grid programming Environments and COmponents
and Component and Framework Technology in High-Performance and Scientific Com-
puting (at HPDC-15), Paris, France, June 2006.

TOWARDS DYNAMIC ADAPTABILITY SUPPORT
FOR THE MASTER-WORKER PARADIGM
IN COMPONENT BASED APPLICATIONS

Françoise André
Université de Rennes 1/IRISA, Campus de Beaulieu, 35042 Rennes cedex, France

Hinde Lilia Bouziane
INRIA/IRISA, Campus de Beaulieu, 35042 Rennes cedex, France

Jérémy Buisson, Jean-Louis Pazat
INSA de Rennes/IRISA, Campus de Beaulieu, 35042 Rennes cedex, France

Christian Pérez
INRIA/IRISA, Campus de Beaulieu, 35042 Rennes cedex, France
{Francoise.Andre,Hinde.Bouziane,Jeremy.Buisson,Jean-Louis.Pazat,Christian.Perez}@irisa.fr

Abstract When executing scientific applications, resources that may be used can vary from
multi-core processors to grids. Therefore, abstracting the programming model
enables portability on various resource infrastructures. Furthermore, software
component technology appears to be a very promising approach to deal with the
growing complexity of scientific applications. Hence, we proposed a model to
improve the support of master-worker paradigm in component models. Capi-
talizing on our experience of adaptability frameworks, we propose to enhance
our model so that master-worker applications can adapt at runtime to varying
conditions. This paper studies how to transparently introduce adaptability in our
model for master-worker applications, what impact it has on the model, and what
requirements it expects from the adaptability framework.

Keywords: Software components, Grid, Master-worker, Dynamic evolution, Adaptability
framework.

118

1. Introduction
While computing grids are becoming more and more common, the question

of their programmability is raising attention. The underlying motivation not
only stems from the high complexity of grids that shall be hidden to program-
mers but it also comes from the increasing complexity of applications. In order
to take advantage of the huge possibilities of grids, more complex applications
like code coupling applications are getting popular.

Software component technology appears very promising to handle the com-
plexity of both grids and applications. Code reuse enables to build complex
applications based on validated building blocks while component composition
provides a mechanism to support complex relationships independently of the
architecture of the execution platform.

An example of such a relationship is the master-worker paradigm. While it
is an algorithmic concept, its implementation varies quite a lot depending on the
execution platform. Hence, we defined a high level master-worker relationship
between components [5, 4]. While it provides a model close to the abstract
concept to the programmers, it can be configured by the execution environment
to fit to the actual resources. However, this previous work did not consider
dynamic adaptation. For example, the number of workers may change depend-
ing on the number of incoming requests or the number of available machines.
The goal of this paper is to study how to introduce adaptability support in a
master-worker paradigm and to evaluate the impact on adaptation frameworks.

The paper is organized as follows. Section 2 summarizes our model to handle
master-worker (M-W) relationship between components as well as an analysis
of various levels of adaptability. Section 3 presents our adaptability framework.
Section 4 discusses different strategies to introduce adaptability within the
M-W relationship. An example and its impact on the M-W model are ana-
lyzed in Section 5. Section 6 concludes the paper and presents some future
works.

2. A high-level master-worker composition model
We proposed in [5] to increase the abstraction level of component models

with respect to the master-worker (M-W) paradigm. Our motivation is twofold.
First, we aim to relieve programmers from dealing with resource dependencies,
such as the number of workers to instantiate or request transport concerns. Sec-
ond, we target to reuse existing master-worker environments, like DIET [7],
as they implement advanced request transport and scheduling algorithms.

The proposal defines a generic model, which we have projected to specific
component models like Fractal [5], Ccm and Cca [4]. In this paper, we
present it according to the Fractal formalism.

Towards Dynamic Adaptability Support for M-W Component based Applications 119

Figure 1. Overview of the master-worker model from the user and framework points of view.

2.1 Overview
The model is based on the concept of collection, which is defined as a set

of exposed ports, bound to some internal component type ports. A collection
behaves like a component: it can be connected to other components. How-
ever, such a composition is done by an abstract architecture description, which
represents the user’s view of the application. Ideally, at deployment time, a
collection is turned into a composite by defining an initial number of internal
component instances and by selecting a request transport pattern. A pattern
represents a request transport algorithm that may be used between master and
worker components. It is a composite whose implementation should be done
by some experts and can or can not be based on software components, such as
DIET [7]. Request transport patterns are defined independently of a collection.
Figure 1 presents an overview of the concepts of the proposed model.

2.2 Need for dynamic behavior
The proposed model dealt with building a static master-worker application

because the translation of the abstract collection to a concrete composite fixes
the number of workers as well as a pattern at deployment time. However, such
choices have to be dynamic to take into account modifications of the application
behavior and/or of the resources. The application behavior encompasses col-
lection level behaviors like the frequency and the kind of incoming requests, the
number of requests waiting for a worker, or the number of connected masters.
It also comprises application’s level behavior when there are several collections
within an application. Resource behaviors are made of standard considerations
like availability, end of a resource reservation, etc.

For a collection, there are three elements that may be dynamically modified:
1) the number of workers, 2) the used pattern and 3) the tuning of the pattern.

For example, let consider an increase of the number of waiting requests. If
the pattern is not the bottleneck, the solution is to add more workers if there are

120

� � ��
�

Figure 2. Dynaco as an assembly of Fractal components and their dependencies.

available resources. However, if the pattern is the bottleneck, either the pattern
may by optimized or it has to be replaced by a more scalable one.

In order to help decision making, validity constraints may be attached to a
pattern. For instance, a round-robin pattern can be adequate for one or a few
connected masters, for equivalent request load and for homogeneous proces-
sors. If at least one of these conditions is not met, another pattern should be
considered, like for example a load-balancing pattern or DIET.

A collection can also be modified to optimize resources usage. For instance,
if there is a lot of workers compared to the number of requests, it can be suitable
to remove some workers to release resources. Last, more complex situations
occur when an application contains several instances of the master-worker par-
adigm. In such a case, re-structuring a collection should be coordinated in order
not to be to the detriment of other collections.

3. A framework for adaptability
In a previous work [1, 6], we have studied how to make applications suit

varying conditions relying on the notion of adaptability. This work led us to
develop a generic component framework for adaptability, Dynaco. Bene-
fiting from a joint work with the university of Pisa [1], this framework splits
adaptability into four sub-functionalities: 1) the framework has to be able to
observe characteristics of the environment in order to trigger adaptability; 2)
when a change is detected, the framework has to decide an adaptation strat-
egy according to observed measures; 3) once a strategy has been decided, the
framework has to plan actions to implement it; at last, 4), planned actions have
to be executed synchronously with the execution of applicative code. On the
left of Figure 2, each sub-functionality is captured by a Fractal component.

Rather than reimplementing the components of the framework specifically
to each application, developers are encouraged to focus on application-specific
issues, thanks to the reuse of existing generic engines. For instance, we have
experimented 3 generic engines for the decide component: 1) a Javavirtual ma-
chine, such that the decision procedure is implemented with a general-purpose
language, allows easy implementations of intuitive decision procedures; 2) the
Jess [10] expert system, such that the decision procedure is expressed with a
domain-specific rule language (i.e. as a collection of ordered rules that looks
like the following statement: “decide a given strategy when an associated con-

Towards Dynamic Adaptability Support for M-W Component based Applications 121

dition becomes true”), allows efficient implementations of complex rule-based
decision procedures; and 3) a genetic algorithm, such that the decision proce-
dure is expressed as a function to optimize (e.g. the performance model of the
application), allows to implement straightforwardly decision procedures when
the application’s behavior is well formalized, possibly with a higher runtime
cost. As described, each engine proposes a different trade-off.

The same applies to the plan and execute components. For the former,
for instance, a pattern matching based mapping from strategies to predefined
plans suits well simple cases; while more sophisticated formalisms such as
Strips [12] (developers only declare the collection of possible actions as pre-
and post-conditions) may be relevant when developers cannot predefine plans
by hand. Similarly, synchronizing adaptation actions with the applicative code
depends mostly on the applicative programming model: we have proposed an
algorithm (Afpac [6]) for any SPMD application. Other algorithms could be
used such as Assist [3] when using its parmod skeleton programming model.

The observe component does not adhere to the same design: monitors are
facilities provided by the environment itself that are wrapped into adapter com-
ponents, which gather, aggregate and preprocess raw measures and events to
their expected formats. The whole observe component is almost independent
from the application and does not need any particular specialization.

As on the right of Figure 2, application-specific code is captured in policy,
guide and a collection of actions, which respectively specialize the decide, plan
and execute components. Using generic engines in that way is what makes
Dynaco highly generic and open, while it encourages effective code reuse.

4. Design choices for adaptability in the M-W paradigm
This section studies how to make use of an adaptability framework such as

Dynaco in the master-worker paradigm. It analyzes two major design choices
we have identified: the choice of the adaptability strategy and of the architecture.
The discussion is done with respect to three criteria: modularity, accuracy, and
scalability. Modularity measures the possibility to compound strategies such
as at the collection level and at the pattern level. Accuracy stands for the kinds
of allowed adaptations while scalability refers to the number of components in
the collection.

4.1 Strategy level
The first choice concerns the way to logically design the adaptation strategy,

which can be monolithic, independent or coordinated.
Considering a single monolithic strategy, the global strategy should han-

dle any possible situation and adaptation for the whole collection. Especially,
it should consistently handle the adaptation at the levels of the collection, the

122

pattern and the pattern implementation. For instance, observing that the request
queue lengthens, instantiating new workers may increase the heterogeneity of
processors, such that the pattern should be replaced by a more suited one (e.g.
switching from round-robin to DIET). A monolithic strategy is able to han-
dle those two adaptations at once. Assuming now that the bottleneck is the
pattern, which may not be able to perform better, not even with a different
implementation nor with additional resources. Being aware of all of the imple-
mented patterns, a monolithic strategy has sufficient knowledge to detect such
a situation and prevent useless workers. Therefore, high accuracy is provided.
However, the major drawback is poor modularity. Indeed, the tight entangle-
ment between adaptations makes it particularly difficult to add incrementally
the support for new patterns, as well as to maintain the strategy, as any local
modification may have an impact on the whole strategy. Worse, in the case of
a multi-collection application, adaptations for all of the collections have to be
handled by a single strategy at the level of the whole application.

Rather than designing the strategy as a whole, it may be better to decompose
it such that the specification of the strategy for each adaptation is close to what
is adapted. Basically, in order to allow good modularization, 3 sub strategies
would be designed: the first one, attached to the collection composite, adapts the
number of workers; the second one, attached to the pattern, selects a convenient
pattern; and the last one, attached to the pattern implementation, optimizes the
pattern. Two alternatives can be derived from this compound strategy. Each
sub strategy may be independent or otherwise it may be coordinated. In the
former case, independence means that no explicit interaction occurs from one
sub strategy to the others. The latter case allows explicit interactions between
sub strategies such that they can coordinate the adaptations of the elements of
the collection. Any technique can be used to implement the coordination, such
as triggering adaptations from other adaptations (propagating adaptations) or
running a negotiation protocol (agreeing on adaptations).

Focusing on the independent approach, let us consider first the above example
of adding worker instances that increase heterogeneity, which may result from
different processors or from different implementations. Independence implies
that the pattern switches its implementation on its own when it observes that
heterogeneity increases, once the collection (independently) has instantiated
new workers. Thus, despite their independence, the sub strategies achieve
together the same adaptations as the single monolithic strategy. However, that
way of observing effects of adaptations is not always enough to implement
accurate adaptations. Consider that the queue lengthens. An accurate strategy
does not instantiate new workers if the pattern would not be able to dispatch
requests at a sufficient pace; and it does not optimize the pattern if there can’t
be enough workers to handle requests. However, independence of the sub
strategies prevents the collection from knowing whether the pattern would be

Towards Dynamic Adaptability Support for M-W Component based Applications 123

Strategy Accuracy Modularity Scalability
Collection Application

Monolithic High None None Low
Independent Low Low High High
Coordinated High High High High

Figure 3. Summarized features of each alternative for the strategy level.

able or not to dispatch requests to additional workers; and it prevents the pattern
from knowing whether the collection would be able to instantiate new workers.
In such a situation, this strategy would desperately preserve the status quo, even
if the collection would be able to perform better; while lowering accuracy may
lead to instantiate useless workers or to over-optimize the pattern.

Last, the coordinated strategy promises to bring the advantages of the two
other strategies without their drawbacks (Figure 3). It preserves compound
strategies for modularity and scalability while letting a global vision to be built
for accuracy. However, several adaptation modules have to be interconnected.

4.2 Achitecture level
The second design choice concerns the architecture of the adaptability. Two

alternatives are identified: centralized and distributed.
A centralized architecture locates the whole adaptability management into a

single location. With respect to the model presented in Section 2, it has to be into
the membrane of the collection. Bindings are, nevertheless, present to enable
it to control the whole collection. The centralized approach is compatible
with all adaptation strategies described in Section 4.1. It also simplifies the
implementation of the coordinated strategy as the communication between the
different strategies may be embedded into the same adaptation framework.
However, it raises an issue for the compound strategies with respect to the
composition of components: the adaptation part of sub components needs to
be injected into the adaptation part of the collection. Hence, the connection
operator of the component model turns out to be more complex. As far as we
know, there is no standard component models that permits it.

With a distributed architecture, the adaptability management is spread over
the whole collection, and in particular in the membranes of the collection, of
the pattern and of the pattern implementation components. The distributed
architecture is not straightfowardly compatible with the monolithic strategy.
However, it perfectly fits with the counpound strategies provided that the com-
munications of the coordinated strategy are quite simply done through some
ports. Considering the advantages of the coordinated strategy, we conclude

124

that this strategy with a distributed architecture appears to be the best choice to
deal with dynamic change in a collection.

4.3 Positionning
Only a couple of adaptability frameworks address the problem of coordi-

nating and distributing adaptations. Dynaco is neutral as it does not prevent
policies to coordinate on their own, but it does not provide any specific support.

Among the other frameworks, Aceel [8] and Plasma [11], are fairly close
to the constructive approach defended here, i.e. building global adaptations as
the collaboration of individual local adaptations. With our previous framework
Aceel, each component contacts other components before adapting, in order
to ensure consistent and synchronized adaptation of the whole assembly. With
Plasma, components impose their adaptations to the other ones through a
simpler propagation mechanism. The contract-driven approach of Assist [2]
is different: considering a hierarchical component model, composite compo-
nents divide their contract in order to assign recursively subcontracts to their
sub components. Coordination of adaptation is enforced by the submission
of contracts that are consistent with another. However, this approach requires
composite components to have precise understanding of the composition of
their immediate subcomponents, in order to devise subcontracts.

Those frameworks are however tied to the programming models for which
they have been specifically designed, often restricted to a fixed collection of pre-
defined adaptations; while focusing only on adaptability, Dynaco integrates
gracefully to any programming model. Dynaco also allows to design more
specific and adequate solutions for each programming paradigm than other
general approaches. Hence, Dynaco is a better start point.

5. Adapation example for a master-worker application
Based on the preceding analysis, this section discusses a design example

for adaptability of a master-worker application. As outlined in Section 2.2,
the adaptation aims at preventing the request queue from unacceptably grow-
ing, while making the queue contain enough requests to feed continuously the
workers. In order to enforce that objective, we propose the following intuitive
compound strategy, using the coordinated approach:

• at the level of the collection: if the request queue lengthens beyond a
threshold, if the pattern is able to increase its dispatch rate accordingly and if
there are available resources, then instantiate new workers; if the request queue
shortens under a threshold, then terminate some workers.

• at the level of the pattern: if the number of masters or the variability of
request durations increases above a threshold, or if the heterogeneity of workers

Towards Dynamic Adaptability Support for M-W Component based Applications 125

Figure 4. Introducing dynamic management in the master-worker model.

increases beyond a threshold, then switch to theDIETpattern; otherwise, under
a threshold switch to round-robin.

In this strategy, coordination (as it appears on Figure 4) occurs before the
collection instantiates new workers. It actually asks the pattern whether it
would be able to dispatch requests at a sufficient rate, for instance involving a
contract renegotiation protocol. The length of the request queue cannot always
be observed directly; lengthenings and shortenings can nevertheless be deduced
from the comparison between arrival and service rates. Other observations are
almost obvious. The example shows that the coordinated and distributed design
suits well and that the necessary monitoring does not breach encapsulation.

Now that an adaptation strategy is designed, the issue is to consider the
impact on the proposed M-W model. Achieving the objective of transparent
dynamic management, there is no need to modify the model at the user view
level. The collection instantiation process seems to be more appropriate to
introduce an adaptability framework. A collection implementation, in particular
the collection and pattern membranes, are determined at this stage. Adding
adaptability framework as controllers in appropriate membranes appears to
be straightforward. Then, only the implementation of collection and pattern
components are concerned by the use of an adaptability framework. However,
the diversity of resource infrastructures and resource management systems lead
to various adaptability policies. For instance, a policy can be more constrained
by resource availability when resource sharing is privileged, otherwise it can
be more constrained by application requirements. As a consequence, similarly
as for patterns, the framework has to do a selection from a set of adaptability
implementations. Fortunately, the specificity of Dynaco to be component-
based allows the use of different implementations. The master-worker model
extended with adaptability support is presented in Figure 4.

6. Conclusion
The paper analyses how to design dynamic adaptability support for compo-

nent-based master-worker applications. Among the discussed possibilities, co-
ordinating several distributed adaptations appears to be the best-suited solution

126

with regard to modularity, scalability and accuracy. In addition, integrating
adaptability at the level of the master-worker abstraction achieves the goal of
hiding the management of execution resources from the developers’ sight.

Among adaptability frameworks, none fully meets the requirements of our
proposal. Its genericity and openness make Dynaco be the best start point.
Based on the experience we gained in our previous work on Aceel [8–9], we
plan to extend Dynaco with specific support for the coordination of distrib-
uted adaptations, so that it meets the requirements. We will also evaluate the
proposed model on synthetic master-worker benchmarks as well as the pos-
sibilities to write generic adaptation policies at the collection and application
levels.

References
[1] M. Aldinucci, F. André, J. Buisson, S. Campa, M. Coppola, M. Danelutto, and C. Zoccolo.

An abstract schema modelling adaptivity management. In Sergei Gorlatch and Marco
Danelutto, editors, Integrated Research in GRID Computing, CoreGRID. Springer, 2007.

[2] M. Aldinucci, M. Danelutto, and M. Vanneschi. Autonomic qos in assist grid-aware
components. In 14th Euromicro International Conference on Parallel, Distributed and
Network-based Processing, February 2006.

[3] M. Aldinucci, A. Petrocelli, E. Pistoletti, M. Torquati, M. Vanneschi, L. Veraldi, and
C. Zoccolo. Dynamic reconfiguration of grid-aware applications in assist. In José C.
Cunha and Pedro D. Medeiros, editors, Proceedings of the 11th International Euro-Par
Conference, volume 3648 of Lecture Notes in Computer Science, pages 771–781, Lisbon,
Portugal, September 2005. Springer.

[4] G. Antoniu, H. L. Bouziane, M. Jan, C. Pérez, and T. Priol. Combining data sharing with
the master-worker paradigm in the common component architecture. In The 15th IEEE
International Symposium on High Performance Distributed Computing (HPDC), Paris,
France, June 2006.

[5] H. L. Bouziane, C. Pérez, and T. Priol. Modeling and executing master-worker applications
in component models. In 11th International Workshop on High-Level Parallel Program-
ming Models and Supportive Environments (HIPS), Rhodes Island, Greece, April 2006.

[6] J. Buisson, F. André, and J.-L. Pazat. Afpac: Enforcing consistency during the adaptation
of a parallel component. Scalable Computing: Practice and Experience, 7(3):83–95,
September 2006. electronic journal (http://www.scpe.org/).

[7] E. Caron, F. Desprez, F. Lombard, J.M. Nicod, M. Quinson, and F. Suter. A Scalable Ap-
proach to Network Enabled Servers. In B. Monien and R. Feldmann, editors, Proceedings
of the 8th International EuroPar Conference, volume 2400 of Lecture Notes in Computer
Science, pages 907–910, Paderborn, Germany, August 2002. Springer-Verlag.

[8] D. Chefrour. Plate-forme de composants logiciels pour la coordination des adaptations
multiples en environnement dynamique. PhD thesis, Université Rennes 1, November 2005.

[9] D. Chefrour and F. André. Développement d’applications en environnements mobiles à
l’aide du modèle de composant adaptatif ACEEL. In Langages et Modèles à Objets. Actes
publiés dans la revue STI, volume 9 of série L’objet, Vanne, France, 2003.

[10] Jess, the rule engine for the java platform. http://herzberg.ca.sandia.gov/jess/.

Towards Dynamic Adaptability Support for M-W Component based Applications 127

[11] O. Layaida and D. Hagimont. Designing self-adaptive multimedia applications through
hierarchical reconfiguration. In L. Kutvonen and N. Alonistioti, editors, DAIS’05, volume
3543 of LNCS, pages 95–107. Springer, 2005.

[12] N. Nilsson and R. Fikes. STRIPS: a new approach to the application of theorem proving
to problem solving. Artificial Intelligence, 2(3–4):189–208, 1971.

IV

COMMUNICATION AND NETWORKING

TOTAL EXCHANGE PERFORMANCE
PREDICTION ON GRID
ENVIRONMENTS

modeling and algorithmic issues

Luiz Angelo Steffenel and Emmanuel Jeannot
Université Nancy 2 / LORIA∗ - AlGorille Team
LORIA - Campus Scientifique - BP 239
54506 Vandoeuvre-lès-Nancy Cedex
France
Luiz-Angelo.Steffenel@univ-nancy2.fr

Emmanuel.Jeannot@loria.fr

Abstract One of the most important collective communication patterns used in scientific
applications is the complete exchange, also called All-to-All. Although efficient
algorithms have been studied for specific networks, general solutions like those
available in well-known MPI distributions (e.g. the MPI Alltoall operation) are
strongly influenced by the congestion of network resources. In this paper we
address the problem of modeling the performance of Total Exchange communi-
cation operations in grid environments. Because traditional performance models
are unable to predict the real completion time of an All-to-All operation, we try
to cope with this problem by identifying the factors that can interfere in both
local and distant transmissions. We observe that the traditional MPI Alltoall im-
plementation is not suited for grid environments, as it is both inefficient and hard
to model. We focus therefore in an alternative algorithm for the total exchange
redistribution problem. In our approach we perform communications in two dif-
ferent phases, aiming to minimize the number of communication steps through
the wide-area network. This reduction has a direct impact on the performance
modeling of the MPI Alltoall operation, as we minimize the factors that inter-
fere with wide-area communications. Hence, we are able to define an accurate
performance modeling of a total exchange between two clusters.

Keywords: MPI, all-to-all, total exchange, network contention, performance modeling, com-
putational grids, personalized many-to-many communications

∗UMR 7503 - CNRS, INPL, INRIA, UHP, Nancy 2

132

1. Introduction
One of the most important collective communication patterns for scientific

applications is the total exchange [1], in which each process holds n different
data items that should be distributed among the n processes, including itself. An
important example of this communication pattern is the All-to-All operation,
where all messages have the same size m.

Generally, most All-to-All algorithms from well-known MPI distributions
rely on direct point-to-point communications among the processes. Because
all these communications are started simultaneously, the communication per-
formance is strongly influenced by the saturation of network resources and
subsequent loss of packets - the network contention. Further, when working in
a grid, we must also face problem related to the heterogeneous communication
environment, which behaves differently if message exchange are made locally
or remotely.

In this paper we study different approaches to model the performance of
the All-to-All collective operation in grid environments. Performance predic-
tion can be extremely helpful on the development of application performance
prediction frameworks such as PEMPIs [2], but also in the optimization of
grid-aware collective communications (e.g.: LaPIe [3] and MagPIe [4]). We
demonstrate that traditional algorithms for the MPI Alltoall operation are hard
to model because of the combined complexity of both local-area contention and
wide-area latency.

This paper is organized as follows: Section 2 presents the problem of the
total exchange and the challenges we face in a grid environment. Section 3
discusses the existing approaches to introduce the network contention in the
performance models for the MPI Alltoall operation. Section 4 extends the
performance prediction problem to a grid environment. We propose a new
algorithmic approach that helps minimizing the contention impact, and we
validate its performance modeling against experimental data obtained on a grid
network. Finally, Section 5 presents some conclusions and the future directions
of our work.

2. Problem of Total Exchange between Two Clusters
We consider the following architecture (see Figure 1). Let there be two

clusters C1 and C2 with respectively n1 nodes and n2 nodes. A network, called
a backbone, interconnects the two clusters. We assume that a cluster use the
same network card to communicate to one of its node or to a node of another
cluster. Based on that topology inter cluster communications are never faster
than communication within a cluster.

Total Exchange Performance Prediction on Grid Environments 133

with n1 nodes

Cluster C1

with n2 nodes

Cluster C2
Backbone

Figure 1. Architecture for the redistribu-
tion problem

Let us suppose that an application
is running and using both clusters (for
example, a code coupling application).
One part of the computation is performed
on cluster C1 and the other part on cluster
C2. During the application, data must be
exchanged from C1 to C2 using the all-
toall pattern. Alltoall (also called total exchange) is defined in the MPI standard.
It means that every node has to send some of its data to all the other nodes. Here
we assume that the data to be transfer is different for each receiving node (if the
data is the same, the routine is called an allgather and is less general that the
studied case). Moreover we assume that the size of the data to exchange is the
same for every pair of nodes (the case where the size is different is implemented
by the alltoallv routine: it is more general than our case and will be studied in
a future work). Altogether, this means that we will have to transfer (n1 + n2)2

messages over different network environments. The data of all these messages
are different but the size of the messages are the same and is given and called
m (in bytes). Several MPI libraries (OpenMPI, MPICH2, etc.) implement the
allltoall routine assuming that all the nodes are on the same clusters, which
means that all communications have the same weight. However, in our case,
some messages are transferred within a cluster (from a node of C1 to a node of
C1 or from C2 to C2) or between the two clusters. In the first case, bandwidth
and latency are faster than in the second case. Therefore, we need different
tools to model the overall performance.

3. Modeling Network Contention
In the All-to-All operation, every process holds m×n data items that should

be equally distributed among the n processes, including itself. The intensive
communication among the processes can easily saturate the network, degrading
the communication performance. Indeed, Chun [5] demonstrated that the over-
all execution time of intensive exchange collective communications is strongly
dominated by the network contention and congestive packet loss, two aspects
that are not easy to quantify. As a result, a major challenge on modeling the
All-to-All operation in local-area networks is to represent the impact of network
contention.

Unfortunately, most communication models like those presented by Christara
et al. [1] and Pjesivac-Grbovic et al. [6] do not take into account the potential
impacts of network contention. These works usually represent the All-to-All
operation as parallel executions of the personalized one-to-many pattern [7], as
presented by the linear model below, where α is the start-up time (the latency
between the processes), 1

β is the bandwidth of the link, m represents the message

134

size in bytes and n corresponds to the number of processes involved in the
operation:

T = (n − 1) × (α + βm) (1)

To correct the performance predictions, Bruck [8] suggested the use of a
slowdown factor. Similarly, Clement et al. [9] introduced a technique that
suggested a way to account contention in shared networks such as non-switched
Ethernet, consisting in a contention factor γ proportional to the number of
process. The use of a contention factor was supported by the work of Labarta
et al. [10], that intent to approximate the behavior of the network contention
by considering that if there are m messages ready to be transmitted, and only b
available buses, then the messages are serialized in

⌈
m
b

⌉
communication waves.

A slightly different approach was followed by Chun [5], who consider the
contention as a component of the communication latency, resulting in the use of
different latency values according to the message size. One drawback, however,
it that this model does not take into account the number of messages passing in
the network nor the link capacity, which is related to the occurrence of network
contention.

3.1 Performance modeling in homogeneous clusters
To cope with this problem and to model the impact of contention on the All-to-

All operation in cluster environments, we presented in [11] an approach inspired
in the work from Clement et al. [9]. In our approach, the network contention
depends mostly on the physical characteristics of the network (network cards,
links, switches). Consequently, we can define a contention ratio γ that bounds
the theoretical model from Equation 1 and the real performance of the network.

Our method differs from previous one by considering that communication
times are not linear regarding the message size. Indeed, we observed that the
communication time presents a non-linear behavior according to some factors
such as MPU message segmentation, MPI transmission policy and switches
maximum interconnection bandwidth.

Therefore, we augment the contention ratio model with a new parameter δ,
which depends on the number of processes but also on a given message size M ,
as seen below. As a consequence, we are able to associate different equations
(linear and affine) in order to help defining a more realistic performance model
for the MPI Alltoall operation in a given network, as illustrated in Figure 2.

T =
{

(n − 1) × (α + mβ) × γ if m < M
(n − 1) × ((α + mβ) × γ + δ) if m ≥ M

(2)

Total Exchange Performance Prediction on Grid Environments 135

α+β

 0.000244141

 0.000976562

 0.00390625

 0.015625

 0.0625

 0.25

 1

 1 32 1024

C
om

pl
et

io
n

tim
e

(s
)

Message size (bytes)

MPI_Alltoall prediction − Giga Ethernet − 40 machines

Standard AlltoAll
Contention−aware Prediction

(n−1)*(m) prediction

Figure 2. Measured and predicted performance for the standard MPI Alltoall in a Gigabit
Ethernet network

4. Performance Modeling on Grid Environments
As the previous model allows a quite accurate representation on the perfor-

mance of local-area networks (see [11]), our first approach would be to estimate
the communication time by composing both local (contention-aware) and re-
mote communications.

Unfortunately, this simple strategy fails to represent the operation of the
MPI Alltoall in a grid. Hence, Figure 3 presents the completion time of the
MPI Alltoall implementation from OpenMPI in a grid with two clusters of 30
machines each. As stated above, we try to predict the communication perfor-
mance by individually representing local and remote communication costs. To
predict the performance of the local network (subjected to contention), we use
γ = 2.6887 and δ = 0.005039 as the contention signature of each local network
(both clusters have similar characteristics under contention).

Actually, we observe that the local-area part plays a small role in the overall
execution time, compared to the wide-area communication cost. Of course, one
could try to define additional parameters for the wide-area communications, but
the final model would be too complex to be useful in real situation. Instead,
we addressed this problem by redefining the All-to-All problem against the
challenges that characterize a grid environment.

4.1 Minimizing the impact of contention on the backbone
When dealing with wide-area networks, the most important factor to be con-

sidered is the time a message takes to be delivered. Indeed, in addition to the
geographical distance, message are subjected to network protocols heterogene-
ity, message routing and transient interferences on the backbone.

Actually, popular algorithms for collective communications on grids (such
as the ones implemented in PACX MPI [12] and MagPIe [4]) try to minimize
communications over the wide-area network by defining a single coordinator
in every cluster, which participates in the inter-cluster data transfers across the

136

 3.05176e-05

 0.000976562

 0.03125

 1

 32

 1024

 1 32 1024 32768 1.04858e+06 3.35544e+07

C
om

pl
et

io
n

tim
e

(s
)

Message size (bytes)

MPI_Alltoall performance on a 30+30 grid

OpenMPI Alltoall
Composite estimation

- wide-area part
- local-area part

Figure 3. Measured and predicted performance for the standard MPI Alltoall in a grid

wide-area backbone. By minimizing the number of WAN communication steps,
we reduce the probability of inducing contention and accumulating transmission
delays on the messages.

However, a single communication between each cluster is an approach in-
appropriate for the MPI Alltoall operation. First, it induces additional com-
munication steps to/from the cluster coordinator, which becomes a bottleneck.
Second, this approach is not optimal concerning the usage of the wide-area band-
width, as wide-area backbones are designed to support simultaneous transfers
and simultaneous transfers [13]. Hence, in order to improve the performance
in a WAN, we need to change the MPI Alltoall algorithm strategy.

4.2 The LG algorithm
To cope with this problem, we try to minimize wide-area communication

steps in a different way. Actually, most of the complexity of the All-to-All prob-
lem resides on the need to exchange different messages through different net-
works (local and distant). The traditional implementation of the MPI Alltoall
operation cannot differentiate these networks, leading to poor performances.
However, if we assume that communications between clusters are slower than
intra-clusters ones, it might be useful to collect data in the local level before
sending it in parallel through the backbone, in a single communication step.

As a consequence, we propose in [14] a grid-aware solution which performs
on two phases. In the first phase only local communications are performed.
During this phase the total exchange is performed on local nodes on both cluster
and extra buffers are prepared for the second (inter-cluster) phase. During the
second phase data are exchanged between the clusters. Buffers that have been
prepared during the first phase are sent directly to the corresponding nodes in
order to complete the total exchange.

More precisely, our algorithm works as follow. Without loss of generality,
let us assume that cluster C1 has less nodes than C2 (n1 ≤ n2). Nodes are
numbered from 0 to n1 + n2 − 1, with nodes from 0 to n1 − 1 being on C1 and

Total Exchange Performance Prediction on Grid Environments 137

 0.015625

 0.0625

 0.25

 1

 4

 16

 64

 256

 1 32 1024 32768 1.04858e+06 3.35544e+07

C
om

pl
et

io
n

tim
e

(s
)

Message size (bytes)

MPI_Alltoall performance comparison on a 30+30 grid

OpenMPI Alltoall
LG Algorithm

Figure 4. Performance comparison between OpenMPI and LG algorithms

nodes from n1 to n1 + n2 − 1 being on cluster C2. We call Mi,j the message
(data) that has to be sent from node i to node j. For instance, the algorithm
proceeds in two phases:

First phase During the first phase, we perform the local exchange: Process
i sends Mi,j to process j, if i and j are on the same cluster. Then it prepares
the buffers for the remote communications. On C1 data that have to be send to
node j on C2 is first stored to node j mod n1. Data to be sent from node i on
C2 to node j on C1 is stored on node �i/n1� × n1 + j.

Second phase During the second phase only n2 inter-cluster communica-
tions occurs. This phase is decomposed in n2/n1� steps with at most n1

communications each. Steps are numbered from 1 to n2/n1� During step s
node i of C1 exchange data stored in its local buffer with node j = i + n1 × s
on C2 (if j < n1 +n2). More precisely i sends Mk,j to j where k ∈ [0, n1] and
j sends Mk,i to i where k ∈ [n1 × s, n1 × s + n1 − 1].

As our algorithm minimizes the number of inter-cluster communications
between the clusters, we need only 2×max(n1, n2) messages in both directions
(against 2 × n1 × n2 messages in the traditional algorithm). For instance, the
exchange of data between two clusters with the same number of process will
proceed in one single communication step of the second phase. Our algorithm
is also wide-area optimal since it ensures that a data segment is transferred only
once between two clusters separate by a wide-area link. Additionally, wide-area
transmissions pack several messages together, reducing the impact of transient
interferences on the backbone. Hence, Figure 4 presents a comparison between
the traditional algorithm used by OpenMPI and the LG algorithm. We observe
that LG improves the performance of the MPI Alltoall operation, reaching over
than 50% of performance improvement comparing to the traditional strategy.

4.3 Modeling approach
As shown above, the algorithm we propose to optimize All-to-All commu-

nications in a grid environment rely on the relative performances of both local

138

and remote networks. Indeed, we extend the total exchange among nodes in
the same cluster in order to reduce transmissions through the backbone.

This approach has two consequences for performance prediction: First, it
prevents contention in the wide-area links, which are hard to model. Second,
the transmission of messages packed together is less subjected to network in-
terferences. For instance, we can design a performance model by composing
local-area predictions obtained with our contention ratio model and wide-area
predictions that can be easily obtained from traditional methods. Hence, an ap-
proximate model would consider the following parts, where TCn corresponds
to Equation 2:

T = max(TC1 , TC2) + n2/n1� × (αw + βw × m × n1) (3)

4.4 Experimental validation
To validate the algorithm we propose in this paper, this section presents our

experiments to evaluate the performance of the MPI Alltoall operation with
two clusters connected through a backbone.

These experiments were conducted over two clusters of the Grid’5000 plat-
form 1, one located in Nancy and one located in Rennes, approximately 1000 Km
from each other. Both clusters are composed of identical nodes (dual Opteron
246, 2 GHz) locally connected by a Gigabit Ethernet network and intercon-
nected by a private backbone of 10 Gbps. All nodes run Linux, with kernel
2.6.13 and OpenMPI 1.1.4. The measures were obtained with the broadcast-
barrier approach [15].

To model the communication performance of both inter-cluster and intra-
cluster communications we use the parameterised LogP model (pLogP) [4].
The pLogP parameters for both local and distant communications were obtained
with the method described in [16]. To model the contention at the local level
we used γ = 2.6887 and δ = 0.005039 for M >= 1KB, parameters obtained
from the method of the least squares as described in [11].

Therefore, in Figure 5 we compare the performance predictions obtained
with Equation 3 against the effective completion time of the LG algorithm.
We observe that prediction fit with a good accuracy to the real execution times,
which is not possible with the traditional MPI Alltoall algorithm. Indeed, the
new algorithm minimizes the impact of distant communications, concentrating
the contention problems at the local level. Because we are able to predict the
performance of local communications even under contention, we can therefore
establish an accurate performance model adapted to grid environments.

1http://www.grid5000.org/

Total Exchange Performance Prediction on Grid Environments 139

 0.03125

 0.0625

 0.125

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 64

 1 32 1024 32768 1.04858e+06 3.35544e+07

C
om

pl
et

io
n

tim
e

(s
)

Message size (bytes)

MPI_Alltoall performance prediction on a 30+30 grid

LG Algorithm
Contention-aware estimation

Figure 5. Performance predictions for the LG algorithm

5. Conclusions and Future Works
In this paper we address the problem of modeling the performance of Total

Exchange communication operations in grid environments. Because traditional
performance models are unable to predict the real completion time of an All-to-
All operation, we try to cope with this problem by identifying the factors that can
interfere in both local and distant transmissions. We observe that the traditional
MPI Alltoall implementation is not suited for grid environments, as it is both
inefficient and hard to model. We focus therefore in an alternative algorithm
for the total exchange redistribution problem. In our approach we perform
communications in two different phases, aiming to minimize the number of
communication steps through the wide-area network. This reduction has a
direct impact on the performance modeling of the MPI Alltoall operation, as
we minimize the factors that interfere with wide-area communications.

In our future works we plan to extend the model to handle more complex
distributions. First, we would like to consider achieving efficient alltoall com-
munications with more than two clusters. This would allow efficient commu-
nications on general grid environments. Second, we would like to explore the
problem of total exchange redistribution when messages have different sizes.
This problem, represented by the alltoallv routine, is more general than our
case and does requires adaptive scheduling techniques.

Acknowledgments
Experiments presented in this paper were carried out using the Grid’5000 ex-

perimental testbed, an initiative from the French Ministry of Research through
the ACI GRID incentive action, INRIA, CNRS and RENATER and other con-
tributing partners (see https://www.grid5000.fr).

140

References
[1] C. Christara, X. Ding and Ken Jackson. An efficient transposition algorithm for distributed

memory computers. Proc. of the High Performance Computing Systems and Applications,
pages 349-368, 1999.

[2] E. T. Midorikawa, H. M. Oliveira and J. M. Laine. PEMPIs: A New Metodology for
Modeling and Prediction of MPI Programs Performance. Proc. of the SBAC-PAD 2004,
IEEE Computer Society/Brazilian Computer Society, pages 254-261, 2004.

[3] L. A. Steffenel and G. Mounie. Scheduling Heuristics for Efficient Broadcast Operations
on Grid Environments. Proc. of the Performance Modeling, Evaluation and Optimization
of Parallel and Distributed Systems Workshop - PMEO’06 (associated to IPDPS’06),
IEEE Computer Society, April 2006.

[4] T. Kielmann, H. Bal, S. Gorlatch, K. Verstoep and R. Hofman. Network Performance-
aware Collective Communication for Clustered Wide Area Systems. J. Parallel Computing
27(11):1431-1456, 2001.

[5] A. T. T. Chun. Performance Studies of High-Speed Communication on Commodity Clus-
ter. PhD. Thesis, University of Hong Kong, 2001.

[6] J. Pjesivac-Grbovic, T. Angskun, G. Bosilca, G. E. Fagg, E. Gabriel and J. J. Dongarra.
Performance Analysis of MPI Collective Operations. Proc. of the Wokshop on Performance
Modeling, Evaluation and Optimisation for Parallel and Distributed Systems (PMEO), in
IPDPS 2005, 2005.

[7] S. L. Johnssonn and C-T. Ho. Optimum Broadcasting and Personalized Communication
in Hypercubes. IEEE Transactions on Computers 38(9):1249-1268, 1989.

[8] J. Bruck, C-T. Ho, S. Kipnis, E. Upfal and D. Weathersby. Efficient algorithms for all-to-all
communications in multiport message-passing systems. IEEE Transactions on Parallel
and Distributed Systems 8(11):1143-1156, 1997.

[9] M. Clement, M. Steed and P. Crandall. Network performance modelling for PM clusters.
Proc. of Supercomputing, 1996.

[10] J. Labarta, S. Girona, V. Pillet, T. Cortes and L. Gregoris. DiP: A parallel program de-
velopment environment. Proc. of the 2nd Euro-Par Conference, vol. 2, pages 665-674,
1996.

[11] L.A. Steffenel. Modeling Network Contention Effects on AlltoAll Operations. in Proc. of
the IEEE Conference on Cluster Computing (CLUSTER 2006), September 2006.

[12] E. Gabriel, M. Resch, T. Beisel, and R. Keller. Distributed computing in a heterogeneous
computing environment. In Proc. of the Euro PVM/MPI 1998. LNCS 1497, pages 180-187,
1998.

[13] H. Casanova. Network modeling issues for grid application scheduling. International
Journal of Foundations of Computer Science 16(2):45-162, 2005.

[14] E. Jeannot and L. A. Steffenel. Fast and Efficient Total Exchange on Two Clusters. Sub-
mitted to EuroPar’07 - 13th International Euro-Par Conference European Conference on
Parallel and Distributed Computing.

[15] B. Supinski, N. Karonis. Accurately Measuring MPI Broadcasts in a Computational
Grid. In 8th IEEE International Symposium on High Performance Distributed Computing
(HPDC’99), 1999.

[16] T. Kielmann, H. Bal, and K. Verstoep. Fast measurement of LogP parameters for message
passing platforms. In 4th Workshop on Runtime Systems for Parallel Programming. LNCS
Vol. 1800, pages 1176-1183, 2000.

SYNTHETIC COORDINATES FOR DISJOINT
MULTIPATH ROUTING OVER THE INTERNET

Andrei Agapi, Thilo Kielmann, Henri E. Bal
Dept. of Computer Science, Vrije Universiteit
Amsterdam, The Netherlands
aagapi@few.vu.nl, kielmann@cs.vu.nl, bal@cs.vu.nl

Abstract We address the problem of routing packets on multiple, router-disjoint, paths in
the Internet using large-scale overlay networks. Multipath routing can improve
Internet QoS, by routing around congestions. This can benefit interactive and
other real-time applications.

One of the main problems with practically achieving router-disjoint multipath
routing is the scalability limitation on the number of participating nodes in such an
overlay network, caused by the large number of (expensive) topology probes re-
quired to discover relay nodes that provide high router-level path disjointness. To
address this problem, we propose a novel, synthetic coordinates-based approach.

We evaluate our method against alternative strategies for finding router-level
disjoint alternative paths. Additionally, we empirically evaluate the distribution
of path diversity in the Internet.

Keywords: path disjointness, path similarity, Quality of Service, overlay networks

142

1. Introduction
Many Internet-based applications suffer from the lack of proper quality-of-

service (QoS) provisioning. Examples are multimedia communication (tele-
phony, video streaming), interactive systems (tele conferencing, games), as
well as distributed scientific experiments, like the LOFAR distributed radio
telescope.

It has been proposed [1, 8, 10] to improve the achievable QoS by using over-
lay networks that provide alternative paths, designed to circumvent performance
bottlenecks within the Internet. Such overlay networks use (application-level)
gateways to relay data around bottlenecks, using paths that are disjoint from
the default path given by Internet routing. The idea is that alternative paths
through relay gateways should avoid using as many routers from the default
Internet path as possible, as to minimize correlation between congestion events
on default and alternative paths. One of the main problems in practically apply-
ing this solution, generally not addressed by these systems, is scale: for large
numbers of hosts within an overlay network and in lack of complete a priori
knowledge of Internet topology underlying the overlay, identifying hosts that
provide highly disjoint alternative paths becomes non-trivial.

In this paper, we propose to select such relays by path similarity, based
on previously discovered relays. The idea is that if a relay is suitable for a
given path, it is also likely to be good for other, similar paths. Paths can be
similar when senders and receivers are respectivelly geographically close to
each other and/or serviced by the same ISPs. Even if this is not the case, similar
BGP-level connections between ISPs traversed for paths might yield the same
relays to provide highly disjoint alternative paths. With our path similarity-
based approach, exhaustive topology probing to search for good relays can be
avoided.

We study measures of path similarity and propose an algorithm to select
relays based on previously used, similar paths. We evaluated our approach using
200 PlanetLab nodes. Our evaluation shows that we can indeed quickly identify
relay nodes that lead to paths that are highly disjoint from the default Internet
routes. Specifically, the cost of our approach in number of topology probes is a
small constant (e.g. about 20 traceroutes), independent of the total number of
nodes in the overlay, N . Alternatively, as explained in our evaluation section, an
exhaustive search for the best relay for a given path is O(N). The performance
of our constant-cost method (i.e. the disjointness provided by relays found),
while worse than that of exhaustive search, significantly improves over random
search with equal, constant cost.

Synthetic Coordinates for Disjoint Multipath Routing 143

2. Identifying Relays for Alternative Paths
We propose to use a synthetic coordinate system modeling Internet path

diversity to overcome the above-mentioned scalability problems. Below, we
denote by the default Internet path, or simply default path between a source s
and a destination d, the set of routers that an IP package has to pass through
when being routed between s and d on the Internet. We denote by alternative
path between s and d, through a relay host r, the union of default paths (s, r)
and (r, d). We define the disjointness of an alternative path as the number of
routers in the default Internet path that are not part of the alternative path.

2.1 Synthetic Coordinates for Path Disjointness
Our approach is based on the idea of path similarity. The intuition behind

is that many Internet paths exhibit similarity w.r.t. which relays provide them
with good disjointness. For instance, a relay that is good for a path between
New York and Amsterdam, is likely to also be good for a path between e.g. New
Jersey and Brussels. In the following, we will try to evaluate this hypothesis
and quantify the afore-mentioned probability.

When building a synthetic coordinate system for latency prediction ([7],
[3]), distance is easy to measure, e.g., as the round-trip time between hosts.
When modeling path disjointness provided by other peer nodes, “distance” is
less obvious. For this purpose, we define path similarity between paths P1
and P2 as the probability that a relay that is good for P1 is also good for P2.
This probability can be quantified in multiple ways, depending on the working
definition of relay goodness. In this paper, we propose and evaluate 3 such
similarity functions: SimKendall (based on Kendall rank correlation [12]),
SimPearson (based on classic Pearson correlation) and SimEuclidian (based on
Euclidian distance).

In all cases, a path’s coordinates are derived as an N -tuple. Each tuple ele-
ment represents the disjointness provided to that path by a relay. A consistent,
randomly chosen relay set, RS, is used and maintained for determining coor-
dinates for all paths. A path’s coordinates can be derived by direct topology
probing (e.g. using traceroute). For each path positioning, 2 ∗ |RS| + 1 topo-
logy probes (where |RS| is the size of RS, typically about 10-20) are needed:
1 probe from source to each relay, 1 from each relay to destination, and 1 for
the default path itself.

Once a path is positioned in the coordinate space this way, relays that were
previously found to be good for paths close to ours in the path similarity space
are also likely (with a probability given by the similarity function) to be good
for our path. Path coordinates are calculated in the same manner for all versions
of our algorithm; the difference is only in the way the path similarity between

144

two paths is calculated (thus the distance function of the coordinate space). We
detail the three similarity functions evaluated in the following.

2.2 Path Similarity Evaluation Functions
Kendall’s rank correlation is a non-parametric measure of correlation be-

tween two sets of values, which gives the probability that any two corresponding
pairs of values in the two sets are concordant (identically ordered). In our case,
if we consider the two sets to be the disjointness values provided by the same,
consistently ordered, set of relays for paths P1 and P2, the Kendall correlation
gives the probability that if a relay R1 provides a better disjointness than R2
(note R1 > R2) for P1, we also have R1 > R2 for P2. Consequently, if a
relay R provides high path disjointness for P1 relative to the entire set of relays
used, it will also have a high rank, thus will be a good relay, for P2. We denote
by SimKendall(P1,P2,RS), the similarity between P1 and P2, through relay set
RS, as given by the Kendall rank correlation test.

The second path similarity estimator we used, SimPearson, is perhaps the
most commonly used correlation measure in statistics, based on linear regres-
sion. We considered Kendall in addition to the more classic, parametric, Pearson
correlation, because it is distribution-free (not assuming the distribution of dis-
jointness, as defined above, to be uniform), less sensitive to outliers and more
accurate for small samples [2](which helps minimizing the number of probes
needed for initial positioning).

SimKendall and SimPearson quantify the relative ordering of relays for the
two paths, w.r.t. disjointness provided. Basically, we identify a path in the
path disjointness space by the relative order of a consistent set of relays. While
Pearson takes into consideration the actual disjointness values, Kendall only
considers rank order. However, none takes into account the difference between
the average values of the two disjointness sets (e.g. {5, 6, 7, 7} and {1, 2,
3, 3} are identic as far as they are concerned). This is on purpose, based on
the following insight: while the actual number of routers from the direct path
avoided by using a same relay may vary from path to path, we hypothesize that
the “relative goodness” of relays is enough to characterize a path’s positioning
in the Internet w.r.t. path disjointness. This is true because the feature we are
interested in is exactly reusing the best relays from similar paths. However, for
comparison purposes, the last function takes into account the afore-mentioned
difference. It is calculated based on the Euclidian distance in the space formed
by the disjointnesses provided to a path by a consistent set of relays.

2.3 Relay Identification Algorithm
We store the needed information in a database (called PathCache) containing

Internet paths, together with relays that provide high disjointness and respective

Synthetic Coordinates for Disjoint Multipath Routing 145

disjointness values. Our current PathCache implementation is centralized but
work is ongoing on a distributed version.

Figure 1 outlines a very simple, distributed algorithm that uses path simi-
larity coordinates and PathCache to find good relays. Initially, RS, a set of
random relays, is picked from all nodes of the overlay and published through
a shared database. This set will act as a consistent random sample for path
similarity calculations. Statistical studies [2]show that, for accurate calculation
of correlations (Kendall), the minimum sample size should be between 10 and
20. This would thus also be a reference minimal size for RS. Making sure
that the nodes in RS are alive is handled by a separate polling algorithm: if
nodes in RS become unavailable, new random nodes are picked and published
instead. In Fig. 1, when a node needs relays for a new path P , first the set
D(P, RS) containing disjointness values provided by relays in RS for path P
is calculated (2 ∗ |RS| + 1 topology probes required). This set represents the
Path Diversity (PD) coordinates of path P . PathCache is then queried for the
most similar paths for which PD coordinates have previously been published (a
k-Nearest Neighbors query with distance function based on one of the similarity
functions). The best relays that have been discovered so far for these paths are
then used for our path.

As we can see, the algorithm relies on previously discovered relays. To
ensure that the database is populated with good relays, several approaches are
possible. For instance, each node can periodically randomly probe for good
relays for random PathCache paths and publish them in PathCache. However,
it is important to note that the search for better relays to populate PathCache
can be done in parallel with queries, and need not be in real time. Conversely,
relays found in this search are likely to benefit multiple queries in the future.

getDisjointRelaysPD(P)
RS ← PathCache.getSampleRelaySet()
Coordp ← getDisjointnessSet(P, RS) // 2 · |RS| traceroutes needed
SimilarPaths ← PathCache.kNNQuery(Coordp,SimFunction)
DisjointRelays ← PathCache.pickTopRelays(SimilarPaths)

Figure 1. Sample use of PD coordinates to find good relay nodes.

3. Evaluation
To evaluate our system we used Internet topology traces obtained on a plat-

form of about 200 geographically distributed PlanetLab nodes. We have fed
these topology measurements into a trace-driven simulator of an overlay net-
work, based on PlanetSim . Nodes ran the algorithm described above to derive
their coordinates and find relays.

146

3.1 Quantifying Internet Path Diversity
In this section, we present an evaluation of the amount of path diversity

inherent to the Internet. Specifically, we characterize the distribution of dis-
jointness values provided to Internet paths by a single, third relay. Fig. 2.a)
presents a cumulative distribution function of the disjointness ratio over about
400 random Internet paths using 150 random relay hosts. Here, we define the
disjointness ratio as the ratio between the disjointness provided by a relay and
the total length of the path (i.e. number of routers in it). We thus normalize for
different path lengths. In the figure, the X axis represents disjointness ratio and
Y the probability that the disjointness ratio provided by a random relay is < X.

Figure 2. a) CDF of disjointness provided by a third relay to default Internet paths. b) CDFs
for distributions of paths w.r.t. fraction of relays providing high disjointness.

We can see that the probability p that an alternative path through a random
relay will avoid less than r=49% of the routers in the default path is of 81%.
For r=72%, p=98%, whereas for r=90%, p=99.89%. These results suggest that
indeed, for large system sizes, randomly looking for relays will perform poorly.
Fig. 2.a) basically characterizes the probability distribution of disjointness pro-
vided by random relays, averaged over all paths. Depending on the Internet
path, this distribution may vary. For instance, depending on the Autonomous
Systems the ends belong to, good relays might be easier to find for some paths
than for others. In this respect, Fig. 2.b) characterizes the distribution of Inter-
net paths w.r.t. the number of good relays that exist for them. “Good” relays
are defined as those that provide disjointness ratio larger than a certain thresh-
old; CDFs for various values of this threshold are plotted. The X axis shows
the fraction of “good” relays, given the respective THRESHOLD. We see that
the CDF becomes very steep as THRESHOLD increases; for instance, if we
consider good relays to be those providing disjointness ratio > 0.8, we note that
for 77% of Internet paths, there exist less than 3% good relays.

Synthetic Coordinates for Disjoint Multipath Routing 147

3.2 Evaluation of Synthetic Coordinates
We now evaluate the performance of searching for good relays using path

similarity-based synthetic coordinates. Fig. 3.a) shows CDFs of disjointness
provided to paths by relays found with our heuristic. Performance is compared
with the “optimal” algorithm (if knowledge of the complete relevant topology
would be obtained and the absolute best relays would be picked) and the “ran-
dom” algorithm, the latter using R random picks and choosing the best relay
found, where R is the actual number of relays that are probed in our approach
(basically the size of the RS set mentioned in section 2). This way, the two
approaches are comparable in terms of cost in topology probes. Obviously, the
optimal approach is much more expensive: (2 ∗ (N − 2) + 1 probes needed to
aquire topology information on all possible relays for a given path, N beeing
the size of the network), but is plotted as a reference. From Fig. 3.a), we can see
that our approach significantly improves on the quality of the relays found by
random search. While our performance is sub-optimal, let us recall that we only
require a low constant cost in topology probes as compared to the O(N) cost
of the optimal approach. We evaluated our heuristic with the three similarity
functions presented. As expected, especially the Kendall and Pearson metrics
seem to perform well. This confirms our hypothesis that the order of the refer-
ence set of relays w.r.t. disjointness provided is a good heuristic in positioning
Internet paths among each other in what path disjointness is concerned.

Figure 3. a) CDFs for disjointness distributions of relays found by our heuristic, with methods:
Euclidian, Pearson, Kendall vs. random and optimal. b) CDFs for Kendall PathCache at relay
quality levels: 4%, 16%, 50%, 100% vs. random, optimal.

The main parameters that can influence the performance of our approach are
the similarity function used, |RS|, the PathCache “fill ratio” (i.e. number of
paths that exist in PathCache) and what we call the PathCache “relay quality”.
This last parameter basically reflects the average quality of relays published
for PathCache paths. As mentioned in subsection 2.3, a separate algorithm
can optionally be employed in the background to improve the quality of relays
published in PathCache, based on periodic random probes. We estimate a

148

published path’s “relay quality” as the number of random probes that were
executed so far to derive its current relay set. PathCache’s overall “relay quality”
is an average of the relay qualities of the paths it contains. We found that search
performance does not significantly depend on |RS|, as long as it is at least 10.
Therefore, an accurate positioning can be done with about 20 traceroutes. Also,
against statistics community guidelines, we found Kendall only marginally
better than Pearson at small sample sizes.

Figure 4. CDFs of average disjointness for relays returned by PathCache at various cache
fills: 40, 200 and 260 paths. Similarity metrics: Kendall (left), Pearson (right).

Fig. 4 shows how the distribution of disjointness provided by returned relays
varies at various PathCache fill ratios for both Kendall and Pearson similarity
metrics. We can see that the quality of relays does improve as the cache contains
more paths and that Kendall seems to be slightly more appropriate at large cache
sizes than Pearson. As reference, CDFs in Fig. 3.a) were plotted at a fill ratio
of 265 paths.

In Fig. 3.b), we evaluate PathCache at various average relay quality lev-
els. We only present the Kendall evaluation, as the results for Pearson are
very similar. Qualities are shown in percentages of total search space covered
(100%=exhaustive search). Again, this is the background search done for a
limited number of paths, not the search needed at query time for all paths.
We see that relays returned by PathCache get better as average relay quality
increases. However, even for very low relay qualities (lowest quality tried is
10 random samples per path), the improvement is consistent when compared
to random search. The improvement increases slowly between 16% and 50%
quality levels, becoming slightly more consistent as the quality approaches ex-
haustive search. A cause might be that, as seen in subsection 3.1, extremely
good relays are relatively rare, thus hard to find in a large set of nodes without
exhaustive search. Where our approach helps a lot is in quickly finding relays
that were relatively good for similar paths, thus significantly improving over
random search. This is useful, because we can imagine that continuous, long-
lived random (or even exhaustive) searches can be conducted in the background

Synthetic Coordinates for Disjoint Multipath Routing 149

for a limited number of paths that populate PathCache, benefiting all future path
queries.

4. Related Work
Recent work is focusing either on Internet topology discovery [9] or on using

overlay networks for improving QoS via multipath routing [8, 1]. Resilient
Overlay Networks (RON) [1] uses overlays for routing around congestions and
network outages. RON and [8] rely on small overlay network sizes for which
topology can be discovered by exhaustive probing. Therefore, we consider
these approaches applications that could benefit from our scalable discovery
of relays. Other work on QoS-improving overlays [10] is focusing on packet
loss reduction via Forward Error Correction and alternative path routing rather
than discovery. A routing underlay is suggested in [6], exposing topology
information to overlays on top, avoiding redundant probing. The approach
differs from ours as AS-level path inference, rather than path similarity, is
employed.

[4] suggests a heuristic for finding good alternative paths in large systems.
It considers paths at BGP- rather than router level. The approach relies on the
earliest divergence rule, stating that BGP paths that diverge from the default
path the earliest have a high chance of converging later. Compared to ours, this
approach requires unbounded probing of candidate relay nodes and BGP infor-
mation. RSIM [5] is a node similarity metric, used to predict path similarity.
It is based on the number of common routers shared by paths from two sources
to multiple destinations. In comparison, we directly estimate and employ path
similarity. Using synthetic coordinates to faster predict Internet properties was
extensively pursued ([7], [3]), however focusing on latency. To the best of our
knowledge, we make the first attempt to derive and use synthetic coordinates
for path disjointness prediction.

5. Conclusions
Using alternative paths helps improving QoS of communication across the

Internet. Such paths can be formed by using explicit relays among the nodes
of an overlay network that lead communication around network bottlenecks.
The crux of the approach is to identify a suitable relay that leads to a new path
which is highly disjoint from the default path given by Internet routing. In
small-scale systems, such relays can be identified by exhaustive search of the
overlay network. Our work focuses on large-scale, possibly dynamic, systems
(e.g. volunteer p2p networks), in which such exhaustive search can not be
applied. We propose a technique that identifies good relays from the ones that
have been suitable for similar paths in the recent past. Our evaluation on 200
PlanetLab nodes shows that we successfully identify suitable relays much faster

150

than exhaustive search, with low, constant cost. We are currently investigating
distributed storage mechanisms for path similarity data to enable a distributed
PathCache implementation.

Acknowledgments
This work is partially supported by the CoreGRID Network of Excellence, funded by the

European Commission’s FP6 programme (contract IST-2002-004265).

References
[1] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Morris. Resilient overlay

networks. In Proceedings of ACM SOSP, 2001.

[2] D.G. Bonett. Sample Size Requirements for Estimating Pearson, Kendall and Spearman
Correlations InPsychometrika, 2000.

[3] R. Cox, F. Dabek, F. Kaashoek, J. Li, and R. Morris. Practical, distributed network coor-
dinates. In ACM SIGCOMM Computer Communication Review, 2004.

[4] T. Fei, S. Tao, L. Gao, and R. Guerin. How to Select a Good Alternate Path in Large
Peer-to-Peer Systems. In Proceedings of IEEE INFOCOM, 2006.

[5] N. Hu and P. Steenkiste. Quantifying Internet End-to-End Route Similarity. InPassive and
Active Measurement Conference (PAM), 2006.

[6] A. Nakao, L. Peterson, and A. Bavier. A routing underlay for overlay networks. In Pro-
ceedings of ACM SIGCOMM, 2003.

[7] T. S. E. Ng and H. Zhang. Predicting Internet network distance with coordinates-based
approaches. InProceedings of IEEE INFOCOM, 2002.

[8] T. Nguyen and A. Zakhor. Path diversity with forward error correction (PDF) system for
packet switched networks. In Proceedings of IEEE INFOCOM, 2003.

[9] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson. Measuring ISP topologies with
Rocketfuel. InIEEE/ACM Transactions on Networking, 2004.

[10] L. Subramanian, I. Stoica, H. Balakrishnan, and R. H. Katz. OverQoS: An Overlay Based
Architecture for Enhancing Internet QoS. In Proc. NSDI, 2004.

[11] B. Zhang, T. S. E. Ng, A. Nandi, R. Riedi, P. Druschel, and G. Wang. Measurement based
analysis, modeling, and synthesis of the Internet delay space. In Proceedings of ACM
SIGCOMM on Internet measurement, 2006.

[12] M.G Kendall. A New Measure of Rank Correlation. InBiometrika, Vol. 30, No. 1/2, 81-93.
Jun., 1938

ATOMIC COMMITMENT
IN TRANSACTIONAL DHTS∗

Monika Moser
Zuse Institute Berlin (ZIB)
Berlin, Germany
moser@zib.de

Seif Haridi
Royal Institute of Technology (KTH)
Stockholm, Sweden
haridi@kth.se

Abstract We investigate the problem of atomic commit in transactional database systems
built on top of Distributed Hash Tables. Therefore we present a framework
for DHTs to provide strong data consistency and transactions on data stored in
a decentralized way. To solve the atomic commit problem within distributed
transactions, we propose to use an adaption of Paxos commit as a non-blocking
algorithm. We exploit the symmetric replication technique existing in the DKS
DHT to determine which nodes are necessary to execute the commit algorithm.
By doing so, we achieve a lower number of communication rounds in contrast
to applying traditional Three-Phase-Commit protocols. We also show how the
proposed solution can cope with dynamism due to churn in DHTs. Our solution
works correctly relying only on an inaccurate failure detection of node failure,
what is necessary for systems running over the Internet.

Keywords: Atomic Commit, Database, Transactions, DHT, Paxos

∗This research work is carried out under the SELFMAN project funded by the European Commission and
the Network of Excellence Core-GRID funded by the European Commission.

152

1. Introduction
DHTs provide the ability to store and lookup data in a fully decentralized

manner. They can be utilized to build a distributed database on top of it. We
consider such a database which provides the user with an interface to perform
transactions on its data, and where all operations on distributed data are done
in a transactional manner. For distributed transactions an atomic commit pro-
tocol is needed to guarantee that either all operations of the transaction take
place or none of them. Only committed states are made visible. Another im-
portant mechanism of distributed transactional systems is concurrency control,
which ensures that concurrent transactions cannot interfere with each other. We
present a framework for having transactions on DHTs and consequently strong
notion of data consistency in DHTs. Our focus in this paper is on the atomic
commit problem.

A typical transaction is a sequence with an arbitrary number of operations
on different items. This sequence of operations is enclosed by a Begin of
Transaction (BOT) and an End of Transaction (EOT). BOT signals that a client
or application wants to start a transaction. The end of a transaction is marked
with EOT. At this point the system has to ensure that either all of the operations
contained in the transaction take place or none of them will affect the system.
Therefore a node receiving EOT starts a distributed commit protocol where it
determines whether all nodes, which are responsible for items that are involved
in the transaction, can execute the operations. If all those nodes confirm that
they can do so, the transaction will be committed.

We propose a solution for atomic commit which is based on the Paxos commit
algorithm introduced in [6]. We show how it can be adapted for a DHT-based
database. The Paxos commit algorithm defines different roles for nodes running
the protocol. We use the specific structure and services of the DHT to determine
which nodes have to act in which role. As DHTs are systems that are highly
dynamic, we show how we can cope with the dynamism and when we have to
fix the group of nodes involved in the protocol. Another advantage of the Paxos
commit algorithm is that it can handle a number of failures among the nodes
without relying on a perfect failure detector, which is an important property for
distributed systems running on the Internet.

Outline. Section 2 gives the problem description for this paper. In section 3
we describe the architecture of our system. Our approach for atomic commit
in a transactional DHT-based database system is presented in 4. Section 5 lists
some related work. As this paper summarizes some work in progress, we add
an outlook on our future work to the final conclusions presented in 6.

Atomic Commitment in Transactional DHTs 153

2. Problem Description
DHTs are utilized to efficiently find data items stored in a P2P system. They

use a hashing function to assign each data item consisting of (Key, Value) an
identifier in a typically large identifier space. Each node that is part of the DHT
is responsible for at least one subrange in the identifier space. Examples for
DHTs are DKS [4], Chord [1], Chord# [2] and CAN [10].

There exist a number of storage systems which are built on DHTs, e.g.
Bamboo1 which is based on Pastry and DHash2 which is based on Chord.
Mostly items in such systems are replicated for a higher degree of availability
and reliability. These systems are typically read-only storage systems.

Atomicity is one of the four ACID properties of a transaction. A transaction
will be executed either completely or will have no effects on the data at all.
Changes on data made by a transaction will be made persistent when it reaches
its commit point at EOT. A transaction will either end with commit or with
abort, in which case the data modifications are canceled, and the transaction
has no effect. In distributed databases, items involved in a transaction may be
spread over different nodes. There is one node that acts as the Transaction
Manager (TM), which is responsible for coordinating the transaction. Nodes
that are responsible for items which are involved in the transaction are the
Transaction Participants (TP). A transaction can only be committed if each of
the TPs is able to commit its part of the transaction. All TPs have to agree
on the same outcome of the transaction. Well known solutions to this problem
are Two-Phase-Commit (2PC) algorithms. In the first phase (voting phase) the
TM initially asks all the TPs to prepare. The TPs answer whether they are
prepared and were able to commit. In the second phase (decision phase) the
TM tells the TPs to commit if all TPs are prepared and are able to make their
changes durable. Figure 1 shows the possible states of a 2PC protocol with one
Transaction Manager and two Transaction Participants.

One Problem with the basic 2PC is that it is a blocking protocol. If the TM
fails in the decision phase (state Collecting), the TPs are not able to receive
the outcome of the transaction and are blocked. A number of non-blocking
algorithms were introduced. Three-Phase-Commit (3PC) algorithms introduce
an extra phase to circumvent a blocking state. For DHT-based systems adding
an extra phase might be very costly in terms of latencies, in particular if nodes
are distributed worldwide. Most of them are also relying on timeouts, which
might impact the performance for Internet-based systems with fluctuating link
delays. We therefore use the Paxos based commit algorithm introduced in
[6]. Instead of using an extra phase, votes of the TPs are sent to a number

1http://www.bamboo-dht.org/
2http://pdos.csail.mit.edu/chord/

154

Figure 1. State-charts for a 2-Phase-Commit Protocol with 2 Participants and 1 Transaction
Manager

of so called acceptors. The non-blocking property is introduced at the cost of
a higher number of messages, instead of an additional communication round.
We think that in a P2P environment it is more important to reduce latency than
reducing the number of messages sent, to achieve an acceptable performance.
Besides the size of the messages needed for the protocol is small. Another
important property of the Paxos commit protocol is that it does not rely on a
perfect failure detector.

Next we will describe the architecture of the system for which our solution
is designed for.

3. Architecture of the Transactional System
In DHT-based transactional database systems each node can act as TM and as

TP. Clients and applications which invoke transactions are connected to arbitrary
nodes in the DHT. Any such node will act as a TM for the transaction started by
the associated client. During the commit phase all nodes which are responsible
for an item that is involved in the transaction act as TPs. Items in our DHT are
replicated. Our solution is illustrated with the symmetric replication scheme of
the DKS DHT as mentioned below. With symmetric replication replicas can
be accessed concurrently.

3.1 Symmetric Replication and Data Consistency
We consider symmetric replication as described in [5, 3]. The storage system

replicates each item with the replication factor f . An identifier of an item is
associated with f − 1 other identifiers. This corresponds to a partition of the
identifier space of size N in N

f equivalence classes. The identifiers for replicas
of an item with identifier id are determined using the following function:
ri(id) = (id+(i−1)N

f)mod N, for 1 ≤ i ≤ f . Using symmetric replication,
items can be accessed concurrently by determining their associated identifiers.

Atomic Commitment in Transactional DHTs 155

Our system maintains strong consistency among operations on data by in-
cluding at least a majority of replicas in these operations. All operations related
to data enforce the invariant that a majority of replicas for a certain data item
is up to date. A majority contains at least �f

2 � + 1 replicas. As write and store
operations are performed on a majority, a read operation includes a majority
as well, to ensure to get the latest version of an item. As a consequence join,
leave and node failure handling have to maintain the replication factor. Espe-
cially they have to ensure that the number of replicas never exceeds f . When
a new node joins the system, it gets the data it will be responsible for, and then
takes over the responsibility from the node formerly responsible for those items.
There is no point where they are both responsible for the transfered items in
order to ensure that the number of replicas for each item does not exceed f .
When a node leaves, it transfers the responsibility for its items to its successor
node and thus again does not change the number of replicas for an item. When
a node failure is detected, another node in the system becomes responsible for
this node’s items. It will read the items from the remaining replicas. Here the
number of replicas is restored to f after some time, but it does not increase the
number of replicas

According to Brewer’s conjecture [12], we will only be able to maintain
availability until partitioned overlays merge. It is impossible to maintain con-
sistency, availability and partition-tolerance at the same time. Our emphasis is
on consistency.

3.2 System Properties
A DHT-based database system differs from a traditional distributed database

system in a number of points that are important for the design of the commit
algorithm. Traditional distributed database systems usually consist of a number
of reliable nodes connected through a LAN. In contrast a DHT is built on
unreliable nodes. The MTTF (Mean Time to Failure) of a node in a DHT
system is typically much smaller. The need for a non-blocking atomic commit
algorithm therefore is higher than in a traditional database system. Traditional
database systems often are optimized for the failure-free case as failures occur
quite seldom.

Another point is latency. In DHT-based database systems latencies are high
due to the WAN communication paths and the routing structure of a DHT. A
non-blocking atomic commit algorithm implemented in a DHT has to be low
in the number of communication rounds to achieve acceptable performance.

The number of nodes involved in a transaction is typically much higher for a
DHT-based system as items are distributed over a larger number of nodes. There
are even two levels of distribution. Additionally distributed items are replicated
and again spread over the whole system. The number of nodes involved in a

156

transaction depends on the number of items which are part of the transaction.
An atomic commit algorithm for a DHT therefore has to be scalable in the
number of participants.

The failure model for a traditional database system is normally based on
a crash-recovery process model. In contrast there are several possible failure
models for DHT-based database systems. In this paper we consider a DHT
database system that is based on a crash-stop process model. When a node
crashes and later recovers, it joins as a new node. Therefore it does not need
to remember any previously stored data, nor logs of uncommitted transactions.
Here we rely on the majority of nodes holding replicas of items involved in
ongoing transactions will survive. This is a consequence of our majority based
consistency mechanisms.

The atomic commit algorithm we present in the next section assumes the
crash-stop DHT model and symmetric replication. It is tailored for high laten-
cies, high distribution of items and it can handle the failure of the TM.

4. Atomic Commit Protocol for a DHT
As mentioned above nodes of the DHT can act as TMs and as TPs. A client

that invokes a transaction is connected to a node in the DHT. This node will be
the TM for that particular transaction. Invoking a transaction will result in the
creation of a transaction item, such that the key of the transaction item results
in an identifier that belongs to the responsibility of the TM and which we refer
to as the transaction-ID. This item will contain the result of the transaction and
will be stored in the transaction manager and also symmetrically stored in the
DHT.

As failures of nodes in DHTs may occur quite often, a non-blocking atomic
commit protocol is needed. Gray and Lamport [6] introduce a commit protocol
built on the Paxos consensus algorithm [8–9]. Our solution is an adaptation of
this commit protocol to work for DHTs. The Paxos commit protocol uses a
number of nodes that collect the votes of the TPs. These are called acceptors.
In the case of a TM’s failure the decision for the transaction can be requested
from the associated set of acceptors. We adapt this protocol by having the set
of nodes responsible for the replicated transaction item as our set of acceptors.
Therefore the number of acceptors is determined by the replication factor of
the whole system.

As mentioned above the Paxos commit algorithm provides an ability to cir-
cumvent the blocking problem of a Two-Phase-Commit protocol. In the next
section we will briefly introduce the properties of the Paxos consensus algorithm
and thereafter Paxos commit.

Atomic Commitment in Transactional DHTs 157

4.1 The Paxos Protocol
Paxos is an algorithm which guarantees uniform consensus. Consensus is

necessary when a set of nodes has to decide on a common value. Uniform
consensus satisfies the following properties: 1. Uniform agreement, which
means that no two nodes decide differently, regardless of whether they fail
after the decision was taken; 2. Validity describes the property that the value
which is decided can only be a value that has been proposed by some node;
3. Integrity, meaning no node may decide twice and finally 4. Termination,
every node eventually decides some value [7]. Paxos assumes an eventual
leader election to guarantee termination. Eventual leader election can be built
by using inaccurate failure detectors.

Paxos defines different roles for the nodes. There are Proposers, which
propose a value, and Acceptors, which either accept a proposal or reject it in
a way that guarantees uniform agreement. Paxos as described in [9] assumes
that each node may act as both proposer and acceptor. In our solution presented
below we use different nodes as proposers and acceptors.

The above mentioned properties of uniform agreement can be guaranteed by
Paxos whenever a majority of acceptors is alive. That means, it tolerates the
failure of F acceptors out of initially 2F + 1 acceptors.

Paxos basically consists of two phases called the read and write phase. In
the read phase a node makes a proposal and tries to get a promise that his value
will be accepted by a majority or it gets a value that it must adopt for the write
phase. In the write phase a node tries to impose the value resulting from the
read phase on a majority of nodes. Either the read or write phase may fail.
Proposals are ordered by proposal numbers. By using an eventual leader to
coordinate different proposals, the algorithm will eventually terminate.

4.2 Atomic Commit with Paxos
Uniform consensus alone is not enough for solving atomic commit. Atomic

commit has additional requirements on the value decided. If some node pro-
poses abort or is perceived to have crashed by other nodes before a decision
was taken, then all nodes have to decide on abort. To decide on commit, all
nodes have to propose prepared.

In the Paxos Commit protocol [6] we have a set of acceptors, with a distin-
guished leader, and a set of proposers. The set of acceptors play the role of the
coordinator and the set of proposers are those who have to decide in the atomic
commit protocol.

Each proposer creates a separate instance of the Paxos algorithm with itself
as the only proposer to decide on either prepared or abort. All instances share
the same set of acceptors. It can be noted that the Paxos consensus can be
optimized, because there is only one proposer for each instance. If a proposer

158

fails, one of the acceptors, normally the leader, acts on behalf of that proposer
in the particular Paxos instance and proposes abort.

Acceptors store the decisions of all proposers. Whenever an acceptor has
collected all decisions, it sends commit or abort to the leader. A leader needs to
receive the decision of a majority of acceptors to do the final decision. Thereafter
the final abort/commit is sent to the initial proposers. If the leader fails by
the eventual failure detector, another leader will take over and can extract the
decision from a majority of acceptors and complete the protocol.

The state-chart of a proposer is similar to the state-chart of a TP in the
original 2PC protocol, as shown in figure 1. Also the state-chart of an acceptor
is similar to that of the TM, referring to the same figure. But instead of sending
the decision commit to the participants, the acceptors send the outcome to the
leader.

4.3 Adapted Paxos Commit for a DHT
Paxos is designed for a static environment with a fixed number of participants

and acceptors. However each transaction involving items of a DHT has different
nodes involved. Every node responsible for an item in a transaction becomes
a TP for that particular transaction. In fact the TM initially does not know
which nodes are TPs. The number of nodes varies according to whether or
not the node is responsible for an item that is involved in the transaction. As
mentioned earlier, each transaction has a certain transaction item. We therefore
use a certain group of acceptors for each particular transaction, that can be easily
determined from the transaction-ID of the transaction item, by using symmetric
replication. The set of acceptors consists of the nodes responsible for a replica
of the transaction item. One advantage is that we create a pseudo static group
of acceptors. The group of acceptors is fixed temporarily by the TM just before
the prepare request is sent to the TPs. With the prepare request the TM informs
the nodes responsible for items in the transaction about the set of acceptors.
When such a node receives the prepare request, it becomes a TP and starts its
Paxos instance. It has to be noted that a node could be responsible for several
items involved in the transaction. The TP runs a separate Paxos instance for
each item it is responsible for.

At this stage the group of TPs and the group of acceptors are fixed. It will
remain fixed during the atomic commit phase. If a node joins/leaves in a DHT,
the responsibility of certain items has to be transferred. The transfer of the
responsibility of items involved in an active commit protocol is deferred until
the protocol instance terminates.

One modification to the Paxos commit is that the acceptors collect the votes
from the TPs and classify them per item. When a majority of TPs holding a

Atomic Commitment in Transactional DHTs 159

replica of an item votes prepared, the acceptors record a prepared vote for this
specific item. If the decision is prepared for all items, the transaction commits.

When a TM knows the decision for the transaction, it can store this infor-
mation in the transaction item. This item can then be replicated in the DHT
just like regular data items. Whenever a TP does not receive the result of the
transaction from the TM, it can query the result of the transaction by reading
the transaction item stored in the DHT.

Another issue is garbage collection of transaction items. As information
on previous transactions grows by time, garbage collection is needed to throw
away information which is no longer needed. This can be done in different ways
either by acknowledgment messages or expiry date associated with transaction
items.

Most of the operations mentioned in this particular DHT-based Paxos commit
are operations on a set of identifiers. This is supported efficiently by bulk
operations in DHTs as described in the DKS system [5, 3].

5. Related Work
In [11] Paxos is used to achieve consensus in DHTs. The authors present

a middleware service called PaxonDHT, which provides a mean to guarantee
strong consistency among a set or replicas. In contrast to PaxonDHT our work
is providing an approach for atomic commit with replicas of several items
involved.

OceanStore [13] provides the ability to concurrently update data stored in a
global persistent data store. A master replica is required which consists of a
set of nodes which run a Byzantine agreement protocol to cooperate with each
other. In [13] the authors mention that transactions could be built on top of the
API of OceanStore. Our work considers a system that provides transactions in
its own interface and provides strong consistency among operations on data.

6. Conclusion and Future Work
We presented a framework for having transactions on DHTs and conse-

quently strong notion of data consistency in DHTs. We focus on the atomic
commit problem. Our solution is based on the Paxos commit algorithm. We
showed why Paxos commit is suitable for DHT-based systems and how we
can adapt it for transactional DHT-based databases. Among nodes Paxos com-
mit defines a set of acceptor and a set of proposers. Our approach uses the
symmetric replication scheme for DHTs to determine a pseudo static group of
acceptors. The non-blocking property of this commit protocol is important as
failures in DHTs occur quite often. Another advantage is a lower number of
communication rounds compared to traditional non-blocking algorithms in dis-
tributed database systems like Three-Phase-Commit. Paxos commit can handle

160

a number of failures among the nodes which are involved in the atomic commit
without violating the properties of atomic commit. Further we showed how to
handle dynamism in a DHT due to churn. We defined the phases when it is
necessary to fix the group of participants in the algorithm to enable a correct
atomic commit.

There is a number of issues left that will be addressed in the future. We
will investigate concurrency control for a DHT-based database system. An
optimistic concurrency control seems reasonable for this scenario. One solu-
tion will be a timestamp based ordering. Further we will evaluate the whole
architecture and specify the algorithms formally.

References
[1] I. Stoica, R. Morris, D. Karger, F. Kaashoek and H. Balakrishnan. Chord: A Scalable

Peer-To-Peer Lookup Service for Internet Applications. Proceedings of the 2001 ACM
SIGCOMM Conference, 2001, 149-160

[2] Thorsten Schütt, Florian Schintke and Alexander Reinefeld. Structured Overlay without
Consistent Hashing: Empirical Results. Proceedings of the Sixth Workshop on Global and
Peer-to-Peer Computing (GP2PC’06), 2006

[3] A. Ghodsi. Distributed k-ary System: Algorithms for Distributed Hash Tables KTH.
Doctoral Dissertation, KTH — Royal Institute of Technology, 2006

[4] L. Onana Alima, S. El-Ansary, P. Brand and S. Haridi. DKS (N, k, f): A Family of
Low Communication, Scalable and Fault-Tolerant Infrastructures for P2P Applications.
In Proceedings of the 3st International Symposium on Cluster Computing and the Grid,
2003

[5] A. Ghodsi, L. Alima and S. Haridi. Symmetric Replication for Structured Peer-to-Peer
Systems. In The 3rd Int Workshop on Databases, Information Systems and Peer-to-Peer
Computing, 2005

[6] J. Gray and L. Lamport. Consensus on transaction commit. In ACM Trans. Database
Syst., ACM Press, 2006, 31, 133-160

[7] R. Guerraoui and L. Rodrigues. Introduction to Reliable Distributed Programming.
Springer-Verlag, 2006

[8] L. Lamport. Paxos Made Simple. 2001

[9] L. Lamport. The part-time parliament. In ACM Trans. Comput. Syst., ACM Press, 1998,
16, 133-169

[10] S. Ratnasamy, P. Francis, M. Handley, R. Karp and S. Schenker. A scalable content-
addressable network. In SIGCOMM ’01: Proceedings of the 2001 conference on Appli-
cations, technologies, architectures, and protocols for computer communications, ACM
Press, 2001, 161-172

[11] B. Temkow, A. Bosneag, X. Li and M. Brockmeyer. PaxonDHT: Achieving Consensus
in Distributed Hash Tables. In SAINT ’06: Proceedings of the International Symposium
on Applications on Internet, IEEE Computer Society, 2006, 236-244

[12] S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility of consistent, available,
partition-tolerant web services. In SIGACT News, 2002

Atomic Commitment in Transactional DHTs 161

[13] J. Kubiatowicz , et al. OceanStore: An Architecture for Global-scale Persistent Storage.
In Proceedings of ACM ASPLOS, 2000

V

JOBS, INFORMATION AND RESOURCES
MANAGEMENT

INFORMATION QUALITY EVALUATION
FOR GRID INFORMATION SERVICES

Wei Xing, Oscar Corcho, Carole Goble
School of Computer Science
University of Manchester
United Kingdom
wxing@cs.man.ac.uk

ocorcho@cs.man.ac.uk

carole@cs.man.ac.uk

Marios Dikaiakos
Department of Computer Science
University of Cyprus, Cyprus
mdd@cs.ucy.ac.cy

Abstract The quality of the information provided by information services deployed in the
EGEE production testbed differs from one system to another. Under the same
conditions, the answers provided for the same query by different information
services can be different. Developers of these services and of other services that
are based on them must be aware of this fact and understand the capabilities and
limitations of each information service in order to make appropriate decisions
about which and how to use a specific information service. This paper proposes
an evaluation framework for these information services and uses it to evaluate two
deployed information services (BDII and RGMA) and one prototype that is under
development (ActOn). We think that these experiments and their results can be
helpful for information service developers, who can use them as a benchmark
suite, and for developers of information-intensive applications that make use of
these services.

Keywords: Grid, Grid Information Service, Information Quality, Evaluation

166

1. Introduction and Motivation
Information Services are regarded as a vital component of Grid infrastructure.

They address the challenging problem of discovery and monitoring of a variety
of Grid resources, including services, hardware, software, etc. The quality
of information provided by information systems affects the performance and
the behaviour of other dependent Grid services. For instance, a Grid meta-
scheduling service will not work optimally if the quality of the information
used for decision making is poor; a Grid Resource Broker depends on the Grid
resource information provided by the information services that it uses; etc.

There is little work on the evaluation of information quality of Grid informa-
tion services. Most evaluation studies focus on performance measurement [1],
evaluating scalability, overload, query response time, etc. Such measurements
are based on the assumption that information quality is equal for different infor-
mation services. However, this assumption does not hold in reality, since each
information system has different mechanisms for collecting and processing in-
formation, and adopts different information models for storage and querying.
We cover this in our experiments, which show that even for a simple query
each system provides different results. For example, for the query “find me
Computing Elements which support the Biomed Virtual Organisation” the two
EGEE default information services, BDII and RGMA, gave 151 and 30 results
respectively. Independently of the reasons for such differences, the main out-
come from this simple test is that information quality of currently-deployed
Grid information services has to be considered carefully.

The work described in this paper has several objectives. First, we want to
obtain a fair systematic approach to measure information quality of dif-
ferent Grid information services, so that we can compare them and provide
guidelines related to when each of them can be used. One challenge is related
to the fact that different Grid information services have different information
models to represent the same type of Grid resources: some of them use LDAP
to represent that information and others use relational models, and the infor-
mation that they store about each resource may also differ. Unlike information
quality evaluation in other domains (such as Web search, where precision and
recall measurements can be obtained by counting numbers of documents), the
information objects in our evaluation are heterogeneous, both in the information
model used and in its access API, what makes it hard to compare the outputs.
We have proposed the use of a common information model to allow compar-
isons between these outputs, as explained in Section 3.2. Another challenge is
related to the differences in the querying capabilities and expressiveness sup-
ported by each service, what makes it difficult to design a good set of relevant
experiments for the evaluation. Some services allow making complex queries
that relate information from different domains (computing elements that sup-

Information Quality Evaluation for Grid Information Services 167

port a specific virtual organisation and a specific software environment) and
others just provide simple querying functionalities. In our approach we have
proposed a set of representative queries that may be issued by other middleware
services or applications, with increasing levels of complexity.

Our second objective is to use our approach to evaluate information quality
of two EGEE information services (BDII and RGMA) and one prototype
that is under development (ActOn). We will analyse the results from this
evaluation and identify the reasons for obtaining them. These results can be
used by developers working on these Grid information services, in order to
improve them, and by developer of systems that are based on them.

The remaining of this paper is organised as follows. Section 2 describes
the information systems to be evaluated. Section 3 introduces our evaluation
framework, including the design rationale, the experiments, and the metrics
to use for evaluation, together with details about how they are measured for
each system. Section 4 describes the results of the experiments carried out, and
provides some conclusions related to these results. Finally, Section 5 reflects
about the lessons learnt in the design of this evaluation framework and gives
references to additional performance tests that we have carried out.

2. Grid Information Services
Currently, there are several well-known and widely-used Grid information

services: Monitoring and Discovery System (MDS), Berkeley DB Information
Index (BDII), and RGMA [2–3]. These services are deployed in most Grid
systems, such as Europe Data Grid, Crossgrid, and Open Science Grid, and
widely used by Grid middleware and applications running on them. From these
three services, we will select BDII and RGMA for our evaluation, since they
are the default information services for the EGEE Grid. We do not include
MDS because it is not used for Computing Elements (CEs) and Sites in EGEE
and would make difficult to perform the comparison. Besides, BDII is based
on MDS, with the same information model (information representation and
access), hence the general results regarding information quality and recom-
mendations obtained for BDII could be easily extrapolated to MDS. Besides
these two services, we will evaluate our ontology-based information service
(based on the ActOn [4] ontology-based integration architecture).

Berkeley DB Information Index (BDII) [2] is an improvement of MDS,
the information service component of the Globus platform. It uses the MDS
information model and access API and caches information with the Berkeley
DB. Information about Grid resources is extracted by “information providers”,
software programs that collect and organise information from individual Grid
entities, either by executing local operations or by contacting third-party infor-
mation sources.

168

Relational Grid Monitoring Architecture (RGMA) [3] combines moni-
toring and information services based on a relational model, implemented with
XML. It has been built in the context of the EU DataGrid project and imple-
ments the Grid Monitoring Architecture (GMA) proposed by the Open Grid
Forum. GMA models the Grid information infrastructure with three types of
components: information producers, information consumers, and a registry,
which mediates the communication between them.

Active Ontology (ActOn)-based information service ActOn [4] is an
ontology-based information integration system, developed by us, which can
be used to maintain up-to-date information for dynamic, large-scale distributed
systems. The ActOn architecture is comprised of a set of knowledge compo-
nents, which represent knowledge from the application domain (e.g., the EGEE
Grid) and from the information sources (e.g., RGMA and BDII servers); and
software components, such as a metadata scheduler (MSch), an information
source selector (ISS), a metadata cache (MC), and a set of information wrap-
pers.

We will evaluate a deployment of the ActOn system that uses BDII and
RGMA as information sources, and a Grid Ontology [5–6] as its information
model, and has been deployed in the EGEE certificate and production testbeds.

3. An evaluation framework for information quality
in Grid information services

Information quality (IQ) can be defined as a measure of the value of the infor-
mation provided by an information system to its users [7]. Quality is normally
subjective and depends on the intended use of information. The authors in
[7] distinguish a set of quality features (intrinsic, contextual, representational
and accessibility IQ) and define different factors to be considered for each of
them (accuracy, objectivity, reputation, relevancy, etc.).

The authors in [8] propose to focus on seven of these characteristics: com-
pleteness, accuracy, provenance, conformance to expectations, logical consis-
tency and coherence, timeliness, and accessibility. We have selected three of
them, namely completeness, accuracy and conformance to expectations.

We are not worried about the provenance of information, since we know
clearly which are the information sources that we use in each moment and
which are the information providers responsible for that information. We are not
worried either about accessibility, since we assume that the systems work within
a Grid security infrastructure (e.g., GSI), so that the information is accessible
as long as the client has the rights to access it and knows the information model
and API used by the corresponding information service.

With respect to the logical consistency and coherence and the timeliness of
the information retrieved and aggregated from the information sources, these

Information Quality Evaluation for Grid Information Services 169

are features that will form part of our future evaluation work, and will be also
considered in further developments of the ActOn-based information service. An
example of why the first feature is important is the following: there are many
cases where a computing element specifies that it gives support to MPI but does
not comply with the requirements for running an MPI job, which are that it
must be a CE server, must have an sshd service running on it, must have the
libraries mpirun and libmpi.so in its file system, and must have at least two
worker nodes. Information services like BDII or RGMA only store and provide
the information that their information producers give them, without checking
their consistency, hence they provide incorrect information due to this fact. As
an example of the second feature, BDII normally updates the information that
has been provided by its information sources every five or six minutes, what
means that this information may be already inaccurate when a client requests
it. Hence, having metadata about the lifetime and freshness of information in
the information service is important.

Now we describe our information quality evaluation framework, including
metrics to be used, the design rationale, and the experiments, together with
details about how the metrics are obtained for each system.

3.1 Evaluation metrics
To check our three criteria, we want to know whether all information services

obtain the same results when answering the same query, given the same condi-
tions in the EGEE testbed. We also want to check how many of those answers
are correct and how many of the existing answers are actually retrieved. This
allows us to know whether the results provided by the services conform to the
user expectations. To check this, we have selected two metrics commonly used
in information retrieval: precision (The proportion of relevant information re-
trieved, out of all the information retrieved) and recall (the proportion of relevant
information that is retrieved, out of all the relevant information available).

3.2 Experiment setup and design
Measurements are taken on the EGEE production testbed, which are accessed

through the UI machines at the University of Manchester1 and at the Institute of
Physics of Belgrade2. A set of Java-based client software and Unix shell scripts
have been developed to carry out the experiments and record their results. They
are available at [6].

The key aspects upon which we compare different information services are
their information model and the expressiveness of their query language. To

1ui.tier2.hep.manchester.ac.uk
2ce.phy.bg.ac.yu

170

evaluate these two features, we have proposed six representative queries that
cover a wide range of Grid systems (hardware and software resources, middle-
ware environment, services, applications, etc.) with increasing complexity:

Query 1: Find all the Computing Elements (CEs) that support the BIO-
MED Virtual Organisation (VO).

Query 2: Find all the CEs that support the BIOMED VO and have more
than 100 CPUs available.

Query 3: Find all the CEs that support the MPI running environment.

Query 4: Find all the CEs that support the BIOMED VO, have more than
100 CPUs available, and support the MPI running environment.

Query 5: Find all the CEs where GATE (Geant4 Application for Tomo-
graphic Emission) can be run.

Query 6: Find all the CEs that support the BIOMED VO, have more than
100 CPUs available, and where GATE can be run.

Table 1. An Example of the Query 1 in BDII, RGMA, and ActOn

Information Ser-
vice

Query 1

BDII ldapsearch -x -H ldap://lcg-bdii.cern.ch:2170
(LDAP Search) -b mds-vo-name=local,o=grid ’(&(objectClass=GlueVOView)

(GlueVOViewLocalID=biomed))’ GlueCEAccessControlBaseRule
RGMA select GlueCEVOViewUniqueID, Value from
(SQL Query) GlueCEVOViewAccessControlBaseRule WHERE Value=’VO:biomed’
ActOn PREFIX egeeOnto: <http://www.cs.man.ac.uk/img/ontogrid#>
(SPARQL
Query)

SELECT ?ceid ?ceID ?VO

WHERE
?ceid egeeOnto:CEUniqueID ?ceID .
?ceid egeeOnto:hasVO ?VO .
OPTIONAL { ?ceid egeeOnto:VO ?ceID .
FILTER (?vo = ‘‘biomed’’)}

Each query has been translated into the query languages of the three in-
formation services. Table 1 shows an example for Query1. We use different
clients to execute them and extract the results (e.g., ldapsearch for BDII, the
gLite RGMA client tools for RGMA and a Java-based ActOn client for the
ActOn-based information service).

Results are obtained in different manners. The result of a BDII query is a
set of LDAP entries, of an RGMA query a set of table rows, and of an ActOn-
based query a set of RDF triples. Figure 1 shows three different ways to show
the same Grid resource (ce02.tier2.hep.manchester.ac.uk, an EGEE Computing

Information Quality Evaluation for Grid Information Services 171

Element) in the three services evaluated. In our experiment we use each “Grid
resource” obtained from a query as the basic unit for counting information,
which will be used to calculate precision and recall.

Figure 1. Results of BDII, RGMA, and ActOn for the the same Grid resource Computing
Element at University of Manchester (ce02.manchester.ac.uk)

3.3 Experimental Results Measurement
In the experiment we examine the information retrieved for each of the six

queries, so as to get their corresponding precision and recall measures.
Precision is easy to determine, since it can be computed manually by looking

at the results obtained from each query. In all cases, we assume binary relevancy
of information, that is, each piece of information retrieved is either relevant or
irrelevant for the issued query.

Recall is more difficult to determine, due to the fact that the amount of
information available in the EGEE production testbed changes frequently in
these systems and there is no way to get accurate information about the actual
state of the Grid resources that are available without using the information
services that we are evaluating. To get a good approximation that can be used
for our purposes, we execute each query 100 times, with a 4-minute interval
between executions, that is, we monitor the testbed during 400 minutes. Then
we use the highest value obtained from this 100 executions as the total number
of relevant information to be used to calculate recall.

4. Evaluation Results and Conclusions
Tables 2, 3 and 4 provide the precision and recall measurements obtained after

the execution of the previous experiments for the three information services:

172

BDII, RGMA and the ActOn-based information service. The values in the
tables show the average of executing the queries 100 times.

Table 2. BDII Recall & Precision Measurement (100 times)

QueryNo. Retrieved Info. Relevant Info. Precision Recall
1 14,999 15,200 1 0.987
2 242,517 19,708 0.082 0.918
3 7174 7300 1 0.983
4 485034 4600 0.010 0.990
5 - - - -
6 - - - -

Table 3. RGMA Recall & Precision Measurement (100 times)

QueryNo. Retrieved Info. Relevant Info. Precision Recall
1 3417 15200 1 0.225
2 6321 6321 1 1
3 6568 7300 1 0.900
4 11245 4914 0.437 0.563
5 - - - -
6 - - - -

Table 4. ActOn Recall & Precision Measurement (100 times)

QueryNo. Retrieved Info. Relevant Info. Precision Recall
1 15200 15200 1 1
2 34100 34100 1 1
3 6568 7300 1 0.900
4 6568 7300 1 0.900
5 24 24 1 0.900
6 6 6 1 1

As a general comment, we can highlight the fact that BDII shows in general
poor results with respect to recall and precision, while ActOn and RGMA
present better results. This is mainly related to the repository that BDII uses
(LDAP), which is too lightweight and hence provides weak information process

Information Quality Evaluation for Grid Information Services 173

and query capabilities; while RGMA’s is based on relational databases and
ActOn’s is based on RDF, which both have better query capabilities.

Now we will analyse with more detail some of the system behaviours over
specific queries, and derive more conclusions from these values:

BDII has weak query capabilities. Table 2 shows bad precision results for
BDII in queries 2 and 4, while the results for queries 1 and 3 are excellent.
This is related to its weak query ability. LDAP-based queries are string-based,
and hence they cannot support queries over numerical values, such as “greater
than or lower than”. To improve this precision value, we need to fetch all
information about CE CPUs as a string value first (as we have done to get these
results), and then post-process (filter) the results on the client side. RGMA and
the ActOn-based information service have better query abilities.

RGMA is not able to relate information available in different tables.
Table 3 shows that RGMA has bad precision in query 4. It contains information
to solve this query, but it comes from two different tables (GlueCE and
GlueSubClusterSoftwareRunTimeEnvironment), and the query language
used by RGMA does not allow joining both tables. Hence the situation is
similar to the previous case: this problem can be solve on the client side by
post-processing the results that have been obtained from each separate query.

RGMA is very sensitive to the registering and availability of information
providers at a given point in time. Table 3 shows that RGMA has bad recall
in query 1. This is because the amount of Computing Element producers that is
available during the experiment is not always stable, due to the fact that either
producers were not registered in the RGMA registry at that specific moment,
or that the producers were not configured correctly or available at that point in
time. BDII and the ActOn-based information service are more robust to this,
due to the fact that they store information locally and do not depend on their
information providers at the time of querying.

Some complex queries cannot be answered by one information service in
isolation. Tables 2 and 3 show that BDII and RGMA can only answer the first
four queries. They cannot answer queries 5 and 6 because their information
providers cannot provide enough information and should be combined. This
shows that the ability of BDII and RGMA to share their data resources is
weak. On the other hand, the ActOn-based information service has the ability
to adopt existing information sources as its information providers, and aggregate
information from these information sources to answer such complex queries.

5. Lessons learned
We have gathered valuable lessons from our experience in designing the

experiments for information quality measurement and conducting them on the

174

EGEE Grid testbed. Most of them are related to the fairness of the information
quality measurement process.

First, there are not standard domain-independent methods to measure
information quality in information systems. To design an experiment in a
specific domain (e.g., Grid information services), we must design it according
to that domain and the information needs of the information service users.

Second, different information services use different information models,
and usually provide different expressivity in their query languages or access
APIs. Hence a special effort has to be made in order to define clearly a fair way
to perform measurements that takes into account these differences.

Acknowledgements
This work is supported by the EU FP6 OntoGrid project (FP6-511513), by the

Marie Curie fellowship RSSGRID (FP6-2002-Mobility-5-006668), and by the
EU FP6 CoreGrid Network of Excellence (FP6-004265). We also thank Pinar
Alper (IMG group), Antun Balaz and Laurence Field (EGEE porject), Georges
Da Costa and Anastasios Gounaris (CoreGrid WP2), for their comments.

References
[1] X. Zhang and J. Schopf, Performance analysis of the globus toolkit monitoring and discov-

ery service, mds2, in the International Workshop on Middleware Performance (MP 2004),
part of the 23rd International Performance Computing and Communications Workshop
(IPCCC), April 2004.

[2] Berkeley Database Information Index (BDII), http://lfield.home.cern.ch/lfield/cgi-
bin/wiki.cgi?area=bdiipage=documentation.

[3] E. W. Team, EDG RGMA, www.marianne.in2p3.fr/datagrid/documentation/rgma-
guide.pdf.

[4] W. Xing, O. Corcho, C. Goble, and M. Dikaiakos, A Grid Information Service based on
an Intelligent Information Integration Architecture, in Europe Semantic Web Conference
2007 (ESWC-2007), 2007, Poster.

[5] M. Parkin, S. van den Burghe, O. Corcho, D. Snelling, and J. Brooke, The Knowledge of
the Grid: A Grid Ontology, in Proceedings of the 6th Cracow Grid Workshop, Cracow,
Poland, October 2006.

[6] OntoGrid CVS, http://www.ontogrid.net/ontogrid/downloads.jsp.

[7] R. Wang and D. Strong, Beyond Accuracy: What Data Quality Means to Data Con- sumers,
Management Information Systems, vol. 12, no. 4, pp. 5 34, 1996.

[8] B. Hughes, Metadata quality evaluation: Experience from the open language archives
community, in ICADL, 2004, pp. 320 329.

DESIGNING GENERAL, COMPOSABLE,
AND MIDDLEWARE-INDEPENDENT
GRID INFRASTRUCTURE TOOLS
FOR MULTI-TIERED JOB MANAGEMENT∗

Erik Elmroth, Peter Gardfjäll, Arvid Norberg,
Johan Tordsson, and Per-Olov Östberg
Dept. Computing Science and HPC2N, Umeå University, SE-901 87 Umeå, Sweden
{elmroth, peterg, arvid, tordsson, p-o}@cs.umu.se

http://www.gird.se

Abstract We propose a multi-tiered architecture for middleware-independent Grid job man-
agement. The architecture consists of a number of services for well-defined tasks
in the job management process, offering complete user-level isolation of service
capabilities, multiple layers of abstraction, control, and fault tolerance. The mid-
dleware abstraction layer comprises components for targeted job submission, job
control and resource discovery. The brokered job submission layer offers a Grid
view on resources, including functionality for resource brokering and submission
of jobs to selected resources. The reliable job submission layer includes com-
ponents for fault tolerant execution of individual jobs and groups of independent
jobs, respectively. The architecture is proposed as a composable set of tools
rather than a monolithic solution, allowing users to select the individual com-
ponents of interest. The prototype presented is implemented using the Globus
Toolkit 4, integrated with the Globus Toolkit 4 and NorduGrid/ARC middlewares
and based on existing and emerging Grid standards. A performance evaluation
reveals that the overhead for resource discovery, brokering, middleware-specific
format conversions, job monitoring, fault tolerance, and management of individ-
ual and groups of jobs is sufficiently small to motivate the use of the framework.

Keywords: Grid job management infrastructure, standards-based architecture, fault toler-
ance, middleware-independence, Grid ecosystem.

∗Financial support has been received from The Swedish Research Council (VR) under contract number 621-
2005-3667. This research was conducted using the resources of the High Performance Computing Center
North (HPC2N).

176

1. Introduction
We investigate designs for a standards-based, multi-tier job management

framework that facilitates application development in heterogeneous Grid en-
vironments. The work is driven by the need for job management tools that:

offer multiple levels of functionality abstraction,

offer multiple levels of job control and fault tolerance,

are independent of, and easily integrated with, Grid middlewares,

can be used on a component-wise basis and at the same time offer a
complete framework for more advanced functionality,

An overall objective of this work is to provide understanding of how to
best develop such tools. Among architectural aspects of interest are, e.g., to
what extent job management functionalities should be separated into individ-
ual components or combined into larger, more feature-rich components, taking
into account both functionality and performance. As an integral part of the
project, we also evaluate and contribute to current Grid standardization efforts
for, e.g., data formats, interfaces and architectures. The evaluation of our ap-
proach will in the long term lead to the establishment of a set of general design
recommendations.

Features of our prototype software include user-level isolation of service
capabilities, a wide range of job management functionalities, such as basic
submission, monitoring, and control of individual jobs; resource brokering; au-
tonomous processing; and atomic management of sets of jobs. All services are
designed to be middleware-independent with middleware integration performed
by plug-ins in lower-level components. This enables both easy integration with
different middlewares and transparent cross-middleware job submission and
control.

The design and implementation of the framework rely on emerging Grid and
Web service standards [3],[9],[2] and build on our own experiences from devel-
oping resource brokers and job submission services [6],[7],[8], Grid scheduling
support systems [5], and the SweGrid Accounting System (SGAS) [10]. The
framework is based on WSRF and implemented using the Globus Toolkit 4.

2. A Model for Multi-Tiered Job Submission
Architectures

In order to provide a highly flexible and customizable architecture, a basic
design principle is to develop several small components, each designed to per-
form a single, well-defined task. Moreover, dependencies between components
are kept to a minimum, and are well-defined in order to facilitate the use of al-
ternative components. These principles are adopted with the overall idea that a

Grid Infrastructure Tools for Multi-level Job Management 177

specific middleware, or a specific user, should be able to make use of a subset
of the components without having to adopt an entire, monolithic system [11].

We propose to organize the various components according to the following
layered architecture.

Middleware Abstraction Layer. Similar to the hardware abstraction layer
of an operating system, the middleware abstraction layer provides the func-
tionality of a set of middlewares while encapsulating the details of these. This
construct allows other layers to access resources running different middlewares
without any knowledge of their actual implementation details.

Brokered Job Submission Layer. The brokered job submission layer offers
fundamental capabilities such as resource discovery, resource selection and job
submission, but without any fault tolerance mechanisms.

Reliable Job Submission Layer. The reliable job submission layer provides
a fault tolerant, reliable job submission. In this layer, individual jobs or groups
of jobs are automatically processed according to a customizable protocol, which
by default includes repeated submission and other failure handling mechanisms.

Advanced Job Submission & Application Layers. Above the three pre-
viously mentioned layers, we foresee both an advanced job submission layer,
comprising, e.g., workflow engines, and an application layer, comprising , e.g.,
Grid applications, portals, problem solving environments and workflow clients.

3. The Grid Job Management Framework (GJMF)
Here follows a brief introduction to the GJMF, where the individual services

and their respective roles in the framework are described.
The GJMF offers a set of services which combined constitute a multi-tiered

job submission, control and management architecture. A mapping of the GJMF
architecture to the proposed layered architecture is provided in Figure 1.

All services in the GJMF offer a user-level isolation of the service capa-
bilities; a separate service component is instantiated for each user and only
the owner of a service component is allowed to access the service capabilities.
This means that the whole architecture supports a decentralized job manage-
ment policy, and strives to optimize the performance for the individual user.

The services in the GJMF also utilize a local call structure, using local Java
calls whenever possible for service-to-service interaction. This optimization is
only possible when the interacting services are hosted in the same container.

The GJMF supports a dynamic one-to-many relationship model, where a
higher-level service can switch between lower-level service instances to im-
prove fault tolerance and performance.

178

Figure 1. GJMF components mapped to their respective architectural layers.

As a note on terminology, there are two different types of job specifications
used in the GJMF: abstract task specifications and concrete job specifications.
Both are specified in JSDL [3], but vary in content. A job specification includes a
reference to a computational resource to process the job, and therefore contains
all information required to submit the job. A task specification contains all
information required except a computational resource reference. The act of
brokering, the matching of a job specification to a computational resource, thus
transforms a task to a job.

Job Control Service (JCS). The JCS provides a functionality abstraction of
the underlying middleware(s) and offers a platform- and middleware-indepen-
dent job submission and control interface. The JCS operates on jobs and can
submit, query, stop and remove jobs. The JCS also contains customization
points for adding support for new middlewares and exposes information about
jobs it controls through WSRF resource properties, which either can be explic-
itly queried or monitored for asynchronous notifications. Note that this func-
tionality is offered regardless of underlying middleware, i.e., if a middleware
does not support event callbacks the JCS explicitly retrieves the information
required to provide the notifications. Currently, the JCS supports the GT4 and
the ARC middlewares.

Resource Selection Service (RSS). The RSS is a resource selection service
based on the OGSA Execution Management Services (OGSA EMS) [9]. The
OGSA EMS specify a resource selection architecture consisting of two services,
the Candidate Set Generator (CSG) and the Execution Planning Service (EPS).

Grid Infrastructure Tools for Multi-level Job Management 179

The purpose of the CSG is to generate a candidate set, containing machines
where the job can execute, whereas the EPS determines where the job should
execute. Upon invocation, the EPS contacts the CSG for a list of candidate ma-
chines, reorders the list according to a previously known or explicitly provided
set of rules and returns an execution plan to the caller.

The current OGSA EMS specification is incomplete, e.g., the interface of
the CSG is yet to be determined. Due to this, the CSG and the EPS are in
our implementation combined into one service - the RSS. The candidate set
generation is implemented by dynamical discovery of available resources using
a Grid information service, e.g., GT4 WS-MDS, and filtering of the identified
resources against the requirements in the job description. The RSS contains
a caching mechanism for Grid information, which alleviates the frequency of
information service queries.

Brokering & Submission Service (BSS). The BSS provides a functionality
abstraction for brokered task submission. It receives a task (i.e., an abstract job
specification) as input and retrieves an execution plan (a prioritized list of jobs)
from the RSS. Next, the BSS uses a JCS to submit the job to the most suitable
resource found in the execution plan. This process is repeated for each resource
in the execution plan until a job submission has succeeded or the resource list
has been exhausted. A client submitting a task to the BSS receives an EPR to
a job WS-Resource in the JCS as a result. All further interaction with the job,
e.g., status queries and job control is thus performed directly against the JCS.

Task Management Service (TMS). The TMS provides a high-level service
for automated processing of individual tasks, i.e., a user submits a task to the
TMS which repeatedly sends the task to a known BSS until a resulting job
is successfully executed or a maximum number of attempts have been made.
Internally, the TMS contains a per-user job pool from which jobs are selected
for sequential submission. The TMS job pool is of a configurable, limited size
and acts as a task submission throttle. It is designed to limit both the memory
requirements for the TMS and the flow of job submissions to the JCS. The
job submission flow is also regulated via a congestion detection mechanism,
where the TMS implements an incremental back-off behavior to limit BSS load
in situations where the RSS is unable to locate any appropriate computational
resources for the task. The TMS tracks job progress via the JCS and manages a
state machine for each job, allowing it to handle failed jobs in an efficient man-
ner. The TMS also contains customization points where the default behaviors
for task selection, failure handling and state monitoring can be altered via Java
plug-ins.

180

Task Group Management Service (TGMS). Like the TMS for individual
tasks, the TGMS provides an automated, reliable submission solution for groups
of tasks. The TGMS relies on the TMS for individual task submission and
offers a convenient way to submit groups of independent tasks. Internally, the
TGMS contains two levels of queues for each user. All task groups that contain
unprocessed tasks are placed in a task group queue. Each task group queue, in
turn, contains its own task queue. Tasks are selected for submission in two steps:
first an active task group is selected, then a task from this task group is selected
for submission. By default, tasks are resubmitted until they have reached a
terminal state (i.e., succeeded or failed). A task group reaches a terminal state
once all its tasks are processed. A task group can also be suspended, either
explicitly by the user or implicitly by the service when it is no longer meaningful
to continue to process the task group, e.g., when associated user credentials have
expired. A suspended task group must be explicitly resumed to become active.
The TGMS contains customization points for changing the default behaviors
for task selection, failure handling and state monitoring.

Client API. The Client API is an integral part of the GJMF; it provides
utility libraries and interfaces for creating tasks and task groups, translating job
descriptions, customizing service behaviors, delegating credentials and contains
service-level APIs for accessing all components in the GJMF. The purpose of
the GJMF Client API is to provide easy-to-use programmable (Java) access to
all parts of the GJMF.

For further information regarding the GJMF, including design documents and
technical documentation of the services, see [12].

4. Performance Evaluation
We evaluate the performance of the TGMS and the TMS by investigating the

total cost imposed by the GJMF services compared to the total cost of using
the native job submission mechanism of a Grid middleware, GT4 WS-GRAM
(without performing resource discovery, brokering, fault recovery etc.).

In the reference tests with WS-GRAM, a client sequentially submits a set
of jobs using the WS-GRAM Java API, delaying the submission of a job un-
til the previous one has been successfully submitted. All jobs run the trivial
/bin/true command and are executed on the Grid resources using the POSIX
Fork mechanism. The jobs in a test are distributed evenly among the Grid re-
sources using a round-robin mechanism. The WS-GRAM tests do not include
any WS-MDS interaction. No job input or output files are transferred and no
credentials are delegated to the submitted jobs. In each test, the total wall clock
time is recorded. Tests are performed with selected numbers of jobs, ranging
from 1 to 750.

Grid Infrastructure Tools for Multi-level Job Management 181

 1

 10

 0 100 200 300 400 500 600 700

A
ve

ra
ge

 j
ob

 t
im

e
(s

)

Number of jobs

TMS
TGMS
GRAM

Figure 2. GRAM and GJMF job processing performance.

The configuration of the GJMF tests is the same as for the WS-GRAM tests,
with the following additions. For the TGMS tests, user credentials are delegated
from the client to the service for each task group (each test). Delegation is also
performed only once per test in the TMS case, as all jobs in a TMS test reuse
the same delegated credentials. For both the TGMS and the TMS tests, the BSS
performs resource discovery using the GT4 WS-MDS Grid information system
and caches retrieved information for 60 seconds. In the TMS and TGMS tests,
all services are co-located in the same container, to enable the use of local Java
calls between the services, instead of (more costly) Web service invocations.

Test Environment. The test environment includes four identical 2 GHz
AMD Opteron CPU, 2 GB RAM machines, interconnected with a 100 Mbps
Ethernet network, and running Ubuntu Linux 2.6 and Globus Toolkit 4.0.3.

In all tests, one machine runs the GJMF (or the WS-GRAM client) and
the other three act as WS-GRAM/GT4 resources. For the GJMF tests, the
RSS retrieves WS-MDS information from one of the three resources, which
aggregates information about the other two.

Analysis. Figure 2 illustrates the average time required to submit and execute
a job for different number of jobs in the test. As seen in the figure, the TGMS
offers a more efficient way to submit multiple tasks than the TMS. This is due
to the fact that the TMS client performs one Web service invocation per task
whereas the TGMS client only makes a single, albeit large, call to the TGMS.
The TGMS client requires between 13 (1 task) and 16.6 seconds (750 tasks)
to delegate credentials, invoke the Web service and get a reply. For the TMS,

182

the initial Web service call takes roughly 13 seconds (as it is associated with
dynamic class-loading, initialization and delegation of credentials), additional
calls average between 0.4 and 0.6 seconds. For the GRAM client, the initial
Web service invocation takes roughly 12 seconds. The additional TMS Web
service calls quickly become the dominating factor as the number of jobs are
increased. When using Web service calls between the TGMS and the TMS
this factor is canceled out. Conversely, when co-located with the TMS and
using local Java calls, the TGMS only suffers a negligible overhead penalty for
using the TMS for task submission. In a test with 750 jobs, the average job
time is roughly 0.35 seconds for WS-GRAM, and approximately 0.51 and 0.57
seconds for the TGMS and TMS, respectively.

As the WS-GRAM client and the JCS use the same GT4 client libraries, the
difference between the WS-GRAM performance and that of the other services
can be used as a direct measure of the GJMF overhead.

In the test cases considered, the time required to submit a job (or a task) can
be divided into three parts.

1 The initialization time for GT4 Java clients. This includes time for class
loading and run-time environment initialization. This time may vary with
the system setup but is considered to be constant for all three test cases.

2 The time required to delegate credentials. This only applies to the GJMF
tests, not the test of WS-GRAM. Even though delegated credentials are
shared between jobs, the TMS is still slightly slower than the TGMS in
terms of credential delegation. The TMS has to retrieve the delegated
credential for each task, whereas the TGMS only retrieves the delegated
credential once per test.

3 The Web service invocation time. This factor grows with the size of
the messages exchanged and affects the TGMS, as a description of each
individual task is included in the TGMS input message. The invocation
time is constant for the TMS and WS-GRAM tests, as these services
exchange fixed size messages.

Summary. When co-hosted in the same container, the GJMF services allots
an overhead of roughly 0.2 seconds per task for large task groups (containing
750 tasks or more). The main part of this overhead is associated with Java class
loading, delegation of credentials and initial Web service invocation. These
factors result in larger average overheads for smaller task groups. For task
groups containing 5 tasks, the average overhead per task is less than 1 second,
and less than 0.5 seconds for 15 tasks. It should also be noted that, as jobs are
submitted sequentially but executed in parallel, the submission time (including
the GJMF overhead), is masked by the job execution time. Therefore, when
using real world applications with longer job durations than those in the tests,
the impact of the GJMF overhead is reduced.

Grid Infrastructure Tools for Multi-level Job Management 183

5. Related Work
We have identified a number of contributions that relate to this project in

different ways. For example, the Gridbus [16] middleware includes a lay-
ered architecture for platform-independent Grid job management; the GridWay
Metascheduler [13] offers reliable and autonomous execution of jobs; the Grid-
Lab Grid Application Toolkit [1] provides a set of services to simplify Grid
application development; GridSAM [15] offers a Web service-based job sub-
mission pipeline which provides middleware abstraction and uses JSDL job
descriptions; P-GRADE [14] provides reliable, fault-tolerant parallel program
execution on the grid; and GEMLCA [4] offers a layered architecture for run-
ning legacy applications through grid services. These contributions all include
features which partially overlap the functionality available in the GJMF. How-
ever, our work distinguishes itself from these contributions by, in the same
software, providing i) a composable service-based solution, ii) multiple lev-
els of abstraction, iii) middleware-interoperability while building on emerging
Grid service standards.

6. Concluding Remarks
We propose a multi-tiered architecture for building general Grid infrastruc-

ture components and demonstrate the feasibility of the concept by implementing
a prototype job management framework. The GJMF provides a standards-
based, fault-tolerant job management environment where users may use parts
of, or the entire framework, depending on their individual requirements. Fur-
thermore, we demonstrate that the overhead incurred by using the framework is
sufficiently small (approaching 0.2 seconds per job for larger groups of jobs) to
motivate the practical use of such an architecture. Initial tests demonstrate that
by proper methods, including reuse of delegated credentials, caching of Grid
information and local Java invocations of co-located services, it is possible to
implement an efficient service-based multi-tier framework for job management.
Considering the extra functionality offered and the small additional overhead
imposed, the GJMF framework is an attractive alternative to a pure WS-GRAM
client for the submission and management of large numbers of jobs.

Acknowledgments
We are grateful to the anonymous referees for constructive comments that

have contributed to the clarity of this paper.

References

[1] G. Allen, K. Davis, K. N. Dolkas, N. D. Doulamis, T. Goodale, T. Kielmann, A. Merzky,
J. Nabrzyski, J. Pukacki, T. Radke, M. Russell, E. Seidel, J. Shalf, and I. Taylor. Enabling

184

applications on the Grid - a GridLab overview. Int. J. High Perf. Comput. Appl., 17(4),
2003.

[2] S. Andreozzi, S. Burke, L. Field, S. Fisher, B. Kónya, M. Mambelli, J. M. Schopf,
M. Viljoen, and A. Wilson. Glue schema specification version 1.2 draft 7.
http://glueschema.forge.cnaf.infn.it/uploads/Spec/GLUEInfoModel 1 2 final.pdf, March
2007.

[3] A. Anjomshoaa, F. Brisard, M. Drescher, D. Fellows, A. Ly, A. S. McGough, D. Pulsipher,
and A. Savva. Job Submission Description Language (JSDL) specification, version 1.0.
http://www.ogf.org/documents/GFD.56.pdf, March 2007.

[4] T. Delaittre, T. Kiss, A. Goyeneche, G. Terstyanszky, S.Winter, and P. Kacsuk. GEMLCA:
Running legacy code applications as Grid services. Journal of Grid Computing, 3(1 –
2):75 – 90, June 2005. ISSN: 1570-7873.

[5] E. Elmroth and P. Gardfjäll. Design and evaluation of a decentralized system for Grid-
wide fairshare scheduling. In H. Stockinger, R. Buyya, and R. Perrott, editors, e-Science
2005, First International Conference on e-Science and Grid Computing, pages 221–229.
IEEE CS Press, 2005.

[6] E. Elmroth and J. Tordsson. An interoperable, standards-based Grid resource broker and
job submission service. In H. Stockinger, R. Buyya, and R. Perrott, editors, e-Science
2005, First International Conference on e-Science and Grid Computing, pages 212–220.
IEEE CS Press, 2005.

[7] E. Elmroth and J. Tordsson. A standards-based Grid resource brokering service sup-
porting advance reservations, coallocation and cross-Grid interoperability. Submitted to
Concurrency and Computation: Practice and Experience, December 2006.

[8] E. Elmroth and J. Tordsson. Grid resource brokering algorithms enabling advance reser-
vations and resource selection based on performance predictions. Future Generation
Computer Systems. The International Journal of Grid Computing: Theory, Methods and
Applications, 2007, to appear.

[9] I. Foster, H. Kishimoto, A. Savva, D. Berry, A. Grimshaw, B. Horn, F. Maciel, F. Siebenlist,
R. Subramaniam, J. Treadwell, and J. Von Reich. The Open Grid Services Architecture,
version 1.5. http://www.ogf.org/documents/GFD.80.pdf, March 2007.

[10] P. Gardfjäll, E. Elmroth, L. Johnsson, O. Mulmo, and T. Sandholm. Scalable Grid-wide
capacity allocation with the SweGrid Accounting System (SGAS). Submitted to Concur-
rency and Computation: Practice and Experience, October 2006.

[11] Globus. An “Ecosystem” of Grid Components.
http://www.globus.org/grid software/ecology.php. March 2007.

[12] Grid Infrastructure Research & Development (GIRD). http://www.gird.se. March 2007.
[13] E. Huedo, R.S. Montero, and I.M. Llorente. A framework for adaptive execution on Grids.

Software - Practice and Experience, 34(7):631–651, 2004.
[14] P. Kacsuk, G. Dózsa, J. Kovács, R. Lovas, N. Podhorszki, Z. Balaton, and G. Gombás.

P-GRADE: a Grid programming environment. Journal of Grid Computing, 1(2):171 –
197, 2003.

[15] W. Lee, A. S. McGough, and J. Darlington. Performance evaluation of the GridSAM job
submission and monitoring system. In UK e-Science All Hands Meeting, Nottingham,
UK, 2005.

[16] S. Venugopal, R. Buyya, and L. Winton. A Grid service broker for scheduling e-Science
applications on global data Grids. Concurrency Computat. Pract. Exper., 18(6):685–699,
May 2006.

AMON - A USER-FRIENDLY JOB MONITORING
FOR THE GRID

Ralph Müller-Pfefferkorn, Reinhard Neumann, Thomas William
Center for Information Services and High Performance Computing (ZIH)
Technische Universität Dresden
D-01062 Dresden, Germany

Ralph.Mueller-Pfefferkorn@tu-dresden.de

Reinhard.Neumann@tu-dresden.de

Thomas.William@zih.tu-dresden.de

Abstract To process large amounts of data, in some fields of science hundreds or thousands
of single jobs are submitted into a Grid. Monitoring the enormous numbers of jobs
and their resource usage in such environments (like the LCG/gLite middleware)
effectively becomes an important issue for the users. Current tools in LCG /
gLite provide only limited value to the user as they are often simple command
line applications only. Keeping an eye on large number of jobs can thus become
quite painful.

In this paper, the user-centric monitoring system AMon is presented that has
been developed within the HEPCG project. It provides Grid users with useful
and graphical information that helps her/him to understand the status of the jobs
and their usage of resources. The latter enables the user to better recover from
job failures.

Keywords: LCG, gLite, job monitoring, resource usage monitoring, R-GMA, visualisation,
portal, GridSphere

186

1. Introduction
One of the frontiers in Grid Computing is the processing of large amounts

of data. The Large Hadron Collider Computing Grid (LCG) project aims to
provide the particle physics community of the LHC collider at CERN with an
environment to be able to analyse the petabytes of data that will be produced
every year.

A typical analysis scenario in this context consists of several hundreds or
thousands of jobs each just reading some small part of the data (one or several
sets of collision events). Another scenario is the simulation of particle physics
events that are written as event sets. Both scenarios have the common problem
of tracking the status of the single jobs, either to simply inform the user about
his/her jobs or to help him to react in case of problems.

Existing monitoring tools in the LCG/gLite environment provide just limited
functionality. They are either command line tools that deliver text strings for
every job - which is hard to evaluate in the case of hundreds of jobs and the
information they provide is very limited (e.g. status only or just parts of the
information necessary to track down problems). Other tools focus on the mon-
itoring of the hardware or the services in the Grid, which is not the information
the user wants and needs.

Outside of gLite there are also ongoing efforts on monitoring. But most of
them focus rather on infrastructure than on a user-centric job monitoring. Mon-
ALisa [1] is a comprehensive system that can collect a variety of monitoring
information. Currently, it focus mainly on hardware, network and service infor-
mation to monitor the Grid infrastructure but it also allows to gather application
specific information.

The High Energy Particle Physics Community Grid project1 (HEPCG) [2]
of the German D-Grid Initiative [3] wants to contribute to the functionality the
LCG-Grid provides to physicists. One major goal is to improve the monitoring
of jobs and their resource usage in a user centric way. This is meant to serve
users who submit jobs as well as resource providers. For the latter the usage of
their resources will be analysed for Grid management and planning.

The first section of this paper illustrates the goals of the monitoring system
and provides an overview of its architecture. The following sections describe
the single components in more details. At the end the status is described and
an outlook will be given on further developments and features.

1funded by the German Federal Ministry of Education and Research (BMBF) under Grant No. 01AK802C

AMon - a User-Friendly Job Monitoring for the Grid 187

Figure 1. Architecture of the Job and Resource Usage Monitoring System

2. Goals and Architecture
The main goal of the developments is the creation of a job and resource usage

monitoring that is focused on the user needs, where user means both the job
submitter and the resource provider. It should be able to answer typical user
(job submitter) questions regarding her/his jobs: What is the status of my job
- still running, done, crashed? What about the memory consumption of my
jobs? What is the CPU usage? Is there any critical entity in consumption of the
resource? Such and more information can indicate problems or help in the case
of unsuccessfully finished jobs. And, in general, these are information that the
users are accustomed to have at their desktop computers.

On the other side it should help the resource providers to get an overview
of what is going on on their machines. In the case of problems related to jobs
and their resource usage the monitoring should support the site administrators
in tracking them. And last but not least with the information they should be
enabled to draw consequences from the usage of their resources - for planning
and designing the Grid infrastructure.

188

Regarding the design of the monitoring there are other objectives from the
users point of view:

1. Easy access and handling
2. Only limited knowledge about monitoring should be needed by the

user
3. Support users with graphical representations of the pre-analysed

information, that allow interaction to get further and more detailed
information

In addition, the inclusion of existing and already used components in LCG
was another point. Thus, an architectural design was setup as illustrated in figure
1: The architecture of AMon is component based. There is a separation between
information accumulation on the single worker nodes (WN), the information
storage, the gathering and analysis of the distributed monitoring data, and their
preparation and visualisation for the user embedded in a user front-end.

Existing components that are used in AMon are:

1. The LCG worker node monitoring [6], which was extended to pro-
vide more information (metrics)

2. R-GMA, the Relational Grid Monitoring Architecture [4] as infor-
mation system to store the monitoring data

3. The portal framework GridSphere [5] to embed the visualisation
into

The information gathering, analysis and visualisation are new developments.
They are independent of gLite as Web Services, portal technology and Java for
graphics were used. A generic interface even allows to plug-in other systems
for information gathering than R-GMA to AMon.

The next sections will describe the single components in more detail.

3. Visualisation and User Frontend
As the focus of AMon is on the user needs the description is started with the

user front-end.
Web browsers are a common and known tool for most computer users. Thus,

the access to the monitoring information is browser based. GridSphere [5], a
JSR 168 compliant portal framework especially designed for Grid needs, is the
integrating platform for the user interaction and the visualisation of the data.
GridSphere already provides needed functionality like user management and
Login/Logout. Additionally, with the GridPortlets package - a collection of
portlets and services - Grid functionality like credential retrieval is available.

AMonVisualiser consists of a set of portlets (small Java classes that are
plugged-in into the portal) and services (Java classes that provide tasks). If the
user asks for monitoring information in a portlet, a services contacts the analysis

AMon - a User-Friendly Job Monitoring for the Grid 189

Figure 2. The monitoring is integrated into GridSphere. Here a example graph of the temporal
development of an information (the CPU usage of the jobs). The red line and ellipse illustrate
the interactivity - clicking in the display reveals more information. The ability to zoom in and
out of the data is denoted by the scrollbars of the display.

service AMonAnalyser (see section 4) for the latest data. The visualisation itself
is implemented as Java applets, that are fed with the data from AMonAnalyser
and run in the users browser.

Visualisation is not just understood as putting data into static histograms. The
visualisation provides the user with graphical representations of the information
by allowing interactivity. Clicking on histograms, time lines or other charts
will serve the user with detailed information about the chosen item, will lead to
displays with extended information or allow to zoom into the data. Examples
of displays are the temporal development of e.g. the CPU usage of the jobs or
their memory consumption or their I/O (available metrics see section 5). Other
charts may give summaries of metrics of their derivatives (see figures 2 and 3).

4. Information Gathering and Pre-Analysis
The second component - the analysis service AMonAnalyser - gathers the

information from the distributed monitoring services and prepares them for the
visualisation. As the amount of monitoring information can be quite significant
this step is separated from the visualisation. It is setup as a Web Service running
in an Tomcat application server [10] and Apache-Axis [9] environment.

190

Figure 3. Examples of other displays for various kinds of information

This service is contacted by the visualisation. The monitoring data are trans-
fered as SOAP messages. Inside SOAP they are packed into a table structure,
where each row corresponds to a measurement at a certain time and each column
represents a metric.

On the other side, AMonAnalyser provides a generic interface to monitoring
systems. Currently, it is able to read out the R-GMA tables using an R-GMA
consumer from the LCG worker node monitoring (see section 5) and the gLite
Logging&Bookkeeping [11]. Access to other monitoring systems, like the
Ganglia monitoring [8] is under development.

5. Information Accumulation and Storage
The LCG worker node monitoring [6] allows the users to start small job

monitoring applications on the worker nodes. The user just has to set an envi-
ronment variable to switch it on. Then, Python based scripts collect information
about the status of the job.

The original version only provided information about wall clock time, CPU
time and real, virtual and total memory usage of the job. The system was
extended to provide more useful metrics that help the user not only to get an
overview of his jobs but also help him to get hints to track down reasons for
possible problems or errors. Table 1 lists all available metrics.

The architecture was changed such, that new metrics/sensors can be easily
added. With the same environment variable as in the original version the user
can now switch on all or single sensors. Additionally, the time intervals in

AMon - a User-Friendly Job Monitoring for the Grid 191

Category Metrics

General job ID; user name; the names of the resource broker, the com-
puting element and the WN; job ID on WN

CPU WallClockTime; UsedCPUTime; load averages

Memory real, virtual, total, and free memory; free and total swap space
Storage free space on home, temporary and work directory; summary

of file system properties

File I/O I/O rates for every file access of the application

Network received and transmitted network

Table 1. Available metrics of the extended LCG worker node monitoring

which the information are collected are variable and configurable by the user.
The default is to publish the data more often at the beginning of a job and then
increase the time interval as the job is running. Nevertheless, the new version is
fully backwards compatible - meaning that installing it will not need any other
changes on the worker node compared to the original version.

The collected data are written to R-GMA, the Relational Grid Monitoring
Architecture [4], which is used in LCG/gLite to store monitoring data. R-GMA
is a kind of a distributed relational database, where monitoring data are stored
in tables. It implements the OGF standard GMA, which is based on a producer-
consumer-registry design. The existing table of the original LCG worker node
monitoring (JobMonitor) was kept for backwards compatibility, the new metrics
are stored in a new table.

6. Status and Future Work
The first prototype of the full system was finished at the end of 2006. A front-

end and a analyser server are provided at the Technische Universiät Dresden
(ZIH) for the HEPCG users to test the whole system.

As R-GMA does not provide any kind of authorisation currently, a authori-
sation mechanism using VOMS [7] is under development. It retrieves the user
credentials from an MyProxy server and contacts an VOMS server for the users
authorisation. Such, the access to the monitoring data is regulated. Resource
providers are allowed to access their sites data only, job submitters can see the
data of their jobs only, a VO manager has access rights to all data.

Work is also going on to provide access to other monitoring systems (like
the already mentioned Ganglia [8]) or to the gLite Logging&Bookkeeping Web
Service directly (instead of the R-GMA L&B data).

192

Better analysis algorithms for the data will be implemented, especially for re-
source usage data for resource providers. Such analysis algorithms will provide
the users with improved information especially to realise critical conditions. A
simple example is to show the ratio of the used CPU time and the wall clock
time, which could point to “hanging” jobs.

A continuous effort is going into the development of new visualisations and
the improvement of the existing ones. So, the main intention is to provide the
users with a helpful, sophisticated and novel tool that supports them in their
daily work in the Grid.

References
[1] I.C. Legrand, H.B.H.B. Newman, R. Voicu, C. Cirstoiu, C. Grigoras, M. Toarta, C. Dobre, :

MonALISA: An Agent based, Dynamic Service System to Monitor, Control and Optimize
Grid based Applications, CHEP 2004, Interlaken, Switzerland, September 2004

[2] HEPCG, High Energy Physics Community Grid (2005), http://www.hepcg.org

[3] D-Grid. The D-Grid Initiative (2005), http://www.hepcg.org/index.php?id=1&L=1

[4] R. Byrom, et al.: Fault Tolerance in the R-GMA Information and Monitoring System.
In: European Grid Conference 2005. Volume 2470 of LNCS., Amsterdam/ Netherlands,
Springer-Verlag Berlin Heidelberg New York (2005) 751-760

[5] J. Novotny, M. Russell, O. Wehrens: GridSphere - A Portal Framework for Build-
ing Collaborations (2005), http://www.gridsphere.org:80/gridsphere/gridsphere?cid=
publications.

[6] L. Field, F. Naz, et al.: User level tools documentation (2006), http://goc.grid.sinica
.edu.tw/gocwiki/User tools.

[7] R. Alfieri, R. Cecchini, V. Ciaschini, Luca dell’Agnello, A. Frohner, K. Lörentey,
F. Spataro: From gridmap-file to VOMS: managing authorization in a Grid environment.
In: Future Generation Computer Systems, v.21 n.4, p.549-558, April 2005

[8] M. L. Massie, B. N. Chun, and D. E. Culler: The Ganglia Distributed Monitoring System:
Design, Implementation, and Experience., Parallel Computing, Vol. 30, Issue 7, July 2004.

[9] The Apache Software Foundation: Apache axis - a soap engine (2006),
http://ws.apache.org/axis/.

[10] The Apache Software Foundation: Apache tomcat - a servlet container (2006),
http://tomcat.apache.org/.

[11] D. Kouril et al.: Distributed Tracking, Storage, and Re-use of Job State Information on
the Grid, In: Proceedings of CHEP04, Interlaken, Switzerland, 27 Sept.-1 Oct. 2004.

CO-ALLOCATING COMPUTE AND NETWORK
RESOURCES - BANDWIDTH ON DEMAND
IN THE VIOLA TESTBED

Thomas Eickermann, Lidia Westphal
Central Institute for Applied Mathematics
Research Centre Jülich,
52425 Jülich, Germany
{th.eickermann, l.kirtchakova}@fz-juelich.de

Oliver Wäldrich, Wolfgang Ziegler
Department of Bioinformatics
Fraunhofer Institute SCAI
53754 Sankt Augustin, Germany
{oliver.waeldrich, wolfgang.ziegler}@scai.fraunhofer.de

Christoph Barz, Markus Pilz
University of Bonn
D-53125 Bonn, Germany
{barz, pilz}@cs.uni-bonn.de

Abstract Distributed applications or workflows need to access and use compute, storage
and network resources simultaneously or chronologically coordinated respec-
tively. Examples are distributed multi-physics simulations that use the combined
computational performance and data storage of multiple clusters. A coordinated
reservation and allocation of the resources is a prerequisite for the efficient use
of such resources. This contribution describes the components of a system that
provides Grid users with this functionality. The Grid middleware UNICORE is
extended to access a MetaScheduling Service (MSS) performing orchestration of
resources of different administrative domains, using advance reservation capabil-
ity of local resource management systems (RMS) - including network connections
for which ARGON serves as RMS. ARGON leverages Bandwidth on Demand,
a cornerstone of next generation Grid enabled optical networks rendering the
network to a first class Grid resource.

Keywords: Grid, advance reservation, Bandwidth on demand, ARGON, UNICORE

194

1. Introduction and Overview
Advanced applications usually benefit from the existence of different, het-

erogeneous resources available in Grids. Being able to select among multiple
resources allows the end-user to execute the individual components of his ap-
plication using the most appropriate resources available. Examples of such ap-
plications are distributed multi-physics simulations where multiple resources
are needed at the same time, or complex workflows where the resources are
needed with some timely dependencies [13].

Additionally, having distributed applications and data, there is also a need
for dedicated QoS of the network connections between the resources to sup-
port efficient execution of the applications. However, to make efficient use of
the resources we need reservation mechanisms that guarantee the availability
of the selected resources including the network at the time they are needed to
execute application components or a component of a workflow. Without reser-
vation there is only a best effort approach to execute applications across multiple
resources without a chance of coordination. Having reservation mechanisms
allows to completely planning the execution of an application or workflow if
the timely dependencies are given by the user. In the VIOLA [17] project we
created a UNICORE based Grid testbed on top of an optical network.

This testbed provides solutions to the problems addressed above: the or-
chestration of resources of different sites belonging to different administrative
domains is done by a MetaScheduling Service (MSS) [18]. This service is
responsible for the negotiation of agreements on resource usage with the indi-
vidual local resource management systems. The agreements are made using
WS-Agreement [1] developed by the GRAAP [9]working group of the Global
Grid Forum [8]. The agreements made basically are Service Level Agree-
ments on the advance reservation of the resources needed for an application or
a workflow [19]. The local resource management systems finally include the
advance reservation in their individual schedules. Extending this approach to
network resources as done in VIOLA allows user or application driven selection
and reservation of network connections with dedicated QoS based on evolving
network technologies.

2. Architecture
2.1 The UNICORE Environment and Extension

of the Client
The Grid-system UNICORE [15] is being developed since 1998 and is used

in various projects and production environments, mainly in Europe and Japan.
UNICORE is based on a three-tier architecture, consisting of (1) a Java-Client
as the user-interface to the Grid, (2) server-components at the UNICORE-sites

Co-Allocating Compute and Network Resources 195

that provide the secure access of the user to the UNICORE Grid and manage
the userÕs jobs and finally (3) the target systems which execute those jobs (see
Figure 1).

UNICORE
Client

Network Job
Supervisor

Target System
Interface

Local
Scheduler

Network Job
Supervisor

Target System
Interface

Local
Scheduler

Network Job
Supervisor

Target System
Interface

Local
Scheduler

Gateway

Vsite Vsite Vsite
Usite Usite

multi-site jobs

Gateway

Figure 1. UNICORE Architecture

The standard UNICORE software offers extended workflow support. UNI-
CORE jobs are composed of subjobs that can be executed on the same or
different resources (called vsites). Dependencies between those subjobs can be
specified, forcing them to be executed in a particular order. In addition to that,
conditional execution and control statements allow to build loops of subjobs.
However, UNICORE has no build-in capabilities to make advance reservations
or to provide synchronous access to distributed resources.

Within VIOLA, this feature has been added via a UNICORE Client-plugin
that accesses an external MetaScheduling Service. The plugin provides a GUI
that lets the user specify his job including the number of processes to run
on which target systems and the required bandwidth between them. Based
on this information, the client requests a reservation from the MSS. Once the
reservation has been made by the MSS, it is processed like any other UNICORE
job. A job may consist of a number of subjobs Ð one for each target system
that is requested. Users can retrieve output, monitor or cancel the job.

In the current version, the plugin is tailored to the needs of distributed simula-
tions using the metacomputing-enabled MPI-implementation Me-taMPICH [3].
Using it, the user not only specifies the resources needed but also further

196

MetaMPICH-related information allowing the plugin to perform additional
tasks, as e.g. distributing the different types of MetaMPICH tasks (compute
tasks, network router tasks, I/O server tasks) onto the requested cluster nodes
based on various policies and generating a MetaMPICH configuration file.

The plugin is designed and implemented in a modular fashion, allowing easy
adaptation to other types of distributed application, not based on MetaMPICH.
An example under consideration is the distributed simulation of crystal growth
in the VIOLA application TechSim. Here, two MPI-applications are coupled
via MpCCI [10] using plain TCP/IP sockets.

2.2 The MetaScheduling Service (MSS)
Once the MSS receives the agreement proposal with the necessary informa-

tion on resources and QoS needed for an application from the UNICORE client
it starts to negotiate with the local Resource Management Systems (RMS) of
these resources (see Figure 2). The negotiation has four main phases:

1 querying the local RMS of the selected systems for free slots to execute
the application within a preview period

2 determining a common time slot (this is done in parallel for all RMS)

3 if such a time-slot exists, perform a reservation request of this slot on
behalf of the user.
otherwise
restart the query with a later start time of the preview period

4 check whether the reservation was made for the correct time slot on all
systems (because local job requests might interfere),
if yes
we are done;
otherwise
restart the query with a later start time of the preview period.

If no common time-slot within the local RMSÕs specific look-ahead times
can be identified, an error is reported to the user. The pseudo-code of the co-
allocation algorithm is depicted in Listing 1. The successful negotiation and
reservation is sent back as agreement to the UNICORE client which then pro-
cesses the job as usual. When the job starts at the negotiated common starting
time the MSS collects the IP addresses of the participating machines (this in-
formation may not be available at an earlier time as the local scheduling system
might assign the job to different nodes than planned at the time of submission)

Co-Allocating Compute and Network Resources 197

Adapter

UNICORE
Client

WS-Agreement/Notification

multi-site jobs

Local
Scheduler

UNICORE
Server

Local
Scheduler

UNICORE
Server

AdapterAdapter

Local
Scheduler

UNICORE
Server

GatewayGateway

UsiteUsite

Meta-
Scheduling

Service

Vsite Vsite Vsite

Adapter

Network
RMS

Figure 2. Architecture of the VIOLA MetaScheduling Environment

and communicates them to the network RMS which in turn is then able to man-
age the end-to-end connections with the requested QoS.

s e t n = number o f r e q u e s t e d r e s o u r c e s
s e t r e s o u r c e s [1 . . n] = r e q u e s t e d r e s o u r c e s
s e t p r o p e r t i e s [1 . . n] = r e q u e s t e d p r o p e r t y p e r r e s o u r c e # number o f nodes , bandwidth ,

t ime , . . .
s e t f r e e S l o t s [1 . . n] = n u l l # s t a r t t im e of f r e e s l o t s
s e t endOfPreviewWindow = f a l s e
s e t n e x t S t a r t u p T i m e = c u r r e n t T i m e +someMinutes # t h e s t a r t i n g p o i n t when

l o o k i n g f o r f r e e s l o t s
w h i l e (endOfPreviewWindow = f a l s e) do {

f o r 1 . . n do i n p a r a l l e l {
f r e e S l o t s [i] = R e s o u r c e A v a i l a b l e A t (r e s o u r c e s [i] , p r o p e r t i e s [i] , n e x t S t a r t u p T i m e)

}

f o r 1 . . n do {
s e t needNext = f a l s e
i f (n e x t S t a r t u p T i m e != f r e e S l o t s [i]) t h e n {

i f (f r e e S l o t s [i] != n u l l) t h e n {
i f (n e x t S t a r t u p T i m e < f r e e S l o t [i]) t h e n {

s e t n e x t S t a r t u p T i m e = f r e e S l o t s [i]
s e t needNext = t r u e

}
} e l s e {

s e t endOfPreviewWindow = t r u e
}

}
}

}

i f ((needNext = f a l s e) & (endOfPreviewWindow = f a l s e)) t h e n r e t u r n
f r e e S l o t s [1] e l s e r e t u r n " no common s l o t found "

Listing 1: Pseudo code of the common timeslot negotiation algorithm

2.3 Advance Network Reservation
Taking a look at the Grid as a geographically distributed set of resources com-

prising computing and storage for users and their applications, the connecting
network infrastructure becomes important. While sites are usually connected
by IP best effort technologies, the coordination of high performance resources
like meta-computing brings new requirements and challenges to the network.

198

Figure 3. North- and sourthbound Interfaces of ARGON

A siteÕs Internet connectivity is usually tailored to the bandwidth demands
of the well-known interactive Internet applications like e-mail and web traffic.
It is assumed that coupling clusters to efficiently use computing and storage
resources from multiple sites requires high bandwidth (e.g. in terms of multiple
Gbit/s) and low delay (e.g. as low as possible) connections with virtually
exclusively usage characteristics. The idea of QoS in the network domain has
been apparent for many years [11], [4]. In addition, the VIOLA project provides
an in advance reservation interface which allows to connect sites on demand
with high speed, low delay connections.

These premium connectivity services can be invoked by the Meta-Scheduling
Service in order to provide on demand the required network QoS for multi-site
jobs. The following section presents a brief overview of the developed network
RMS ARGON [2](Allocation and Reservation in Grid-enabled Optic Networks)
including the advance reservation capable interface for the Grid application
layer offering connectivity services with a specified QoS on top of the optical
network between the Grid sites in the VIOLA network. Figure 3 shows the
north- and southbound interfaces of ARGON.

ARGON is designed to provide a set of network related services to the Grid
community, e.g. advance reservations can be requested by the upper layer
(e.g. MSS). This includes the instantaneous setup of network connections if
the requested resources are available for the specified span of time. At this level
ARGON tries to hide the details of the network technologies, i.e. the user or
application specifies QoS requirements for a service and describes the service
endpoints.

ARGON maps abstract premium connectivity services to specific layer 2
and layer 3 network services via MPLS as well as point-to-point connectivity
services via GMPLS. Beside the details of a single service, a set of services can
be bundled in a single request for reservation. Hence, a reservation may consist

Co-Allocating Compute and Network Resources 199

of several services with chronological dependencies which may themselves
consist of several connections as a basis for the service. Consequently, the whole
reservation can be regarded as a transaction: All services contained are accepted,
rejected or postponed as a whole. This also applies for malleable reservations
where the overall service of the reservation can be stretched or compressed in
the same way. The idea of malleable reservations is sketched in Figure 4. A data
amount has to be transferred and according to the present resource allocation
and reservation parameters, ARGON can choose an appropriate duration and
capacity frame to schedule the service.

In order to allow for automated resource coordination and provisioning,
the northbound interface is implemented as a WebService and accessible via
SOAP [14]. The interface currently consists of five message types for reser-
vation of resources, cancellation of reservations, query of reservation related
information, availability information and the binding of additional information
for provisioning purposes. Availability information and binding of provision-
ing information are especially important for the co-allocation of resources via
the MSS. The availability request helps to find a common time slot for cluster
and network resources.

Figure 4. Malleable Reservations

A late binding of provisioning information allows for the MetaScheduling
Service and the local scheduling systems respectively appointing the cluster
nodes used for a reservation just in time before the provisioning. At the time of
reservation only the service endpoint (e.g. provider or consumer edge router),
but not the identity of the cluster nodes needs to be known. The provisioning
information may consist of ports of the router to which the cluster nodes are
attached and/or IP addresses.

The southbound interface of ARGON to the network components uses stan-
dard network management protocols Ð if available Ð to initiate MPLS/GMPLS
based signalling to control both the MPLS and the GMPLS domain. At the

200

time of writing, the primary interfaces to the network equipment use either a
Command Line Interface (CLI) Ð which is not only vendor specific but also
version dependent Ð and SNMP if possible. It is also envisioned to integrate
vendor specific management interfaces that support XML message transfer with
a higher layer of abstraction. In the context of MPLS two services are favoured
by ARGON: A layer 3 based tunnel service and VPLS. The layer 3 based tunnel
service utilizes MPLS traffic engineered point-to-point tunnels which convey
IP packets.

One of the next topics for the network RMS ARGON includes the challenge
of multi-domain reservations (east-/westbound interface). This topic includes
the interaction between multiple ARGON systems or other network RMS like
UCLP [16], G-lamda [6] and DRAC [5] which provide similar ideas to build
next generations Grid enabled optical networks.

The core of ARGON utilizes the network topology information to compute
the possible paths in the network to realize and plan the requested services in
advance. Although the network equipment in the VIOLA testbed allows for
traffic engineering, in on demand and in advance reservations must be handled
by ARGON. Protocols used for traffic engineering Ð like OSPF-TE and RSVP-
TE Ð provide means for instantaneous path computation and signalling within
the network components. Pre-planning of future capacity usage is therefore left
to the core of ARGON which supervises the resource usage in the underlying
network layers like MPLS and GMPLS.

3. Outlook
The current version of the VIOLA Grid testbed expects the user to describe

the resource demands of his application using the UNICORE client and do a
pre-selection of resources satisfying this demand. However, we are working
on several other projects to have applications providing this information. An-
notating applications with the knowledge about their requirements will allow
to make the resource pre-selection process more automatic and disburden the
user from this task.

The communication of the MSS with the other components of the system
is based on WS-Agreement. WS-Agreement version 1 does not support re-
negotiation of agreements already accepted an extended version with richer
negotiation capabilities is under preparation. Once this version becomes avail-
able we will switch to the new version. In the FP6 funded project UniGrids, a
WS-based version of UNICORE is under development. A tighter integration
of the MSS into the UNICORE system is currently under development in the
European PHOSPHORUS [12] project and will be based on UNICORE 6. The
PHOSPHORUS project is targeting on a better integration of Grid resources,
Grid middleware and the network resources. PHOSPHORUS will also estab-

Co-Allocating Compute and Network Resources 201

lish a bandwidth on demand service on top of the European GÉANT [7] and
the National Research Networks of the project partners.

Acknowledgments
Some of the work reported in this paper is funded by the German Federal

Ministry of Education and Research through the VIOLA project under grant
#01AK605L. This paper also includes work carried out jointly within the Core-
GRID Network of Excellence funded by the European Commission’s IST pro-
gramme under grant #004265.

References
[1] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, T. Nakata, J. Pruyne,

J. Rofrano, S. Tuecke, and M. Xu. Web Services Agreement Specification (WS-
Agreement), March 2007. 15 Mar 2007 <https://forge.gridforum.org/sf/docman/
do/downloadDocument/projects.graap-wg/docman.root.current drafts/doc6091/>.

[2] ARGON - Allocation and Reservation in Grid-enabled Optic Networks. VIOLA Project
Report, March 2006 <http://www.viola-testbed.de/>.

[3] B. Bierbaum, C. Clauss, Th. Eickermann, L. Kirtchakova, A. Krechel, S. Springstubbe,
O. Wäldrich, Ph.Wieder, and W. Ziegler. Reliable Orchestration of distributed MPI-
Applications in a UNICORE-based Grid with MetaMPICH and MetaScheduling. In
Proc. of the EuroPVM/MPI 2006, volume 4192 of Lecture Notes in Computer Science,
pages 174 – 183. Springer, 2006.

[4] S. Chen and K. Nahrstedt. An Overview of Quality-of-Service Routing for Next Gen-
eration High-Speed Networks: Problems and Solutions. In IEEE Network, Special Issue
on Transmission and Distribution of Digital Video, volume 12, No 6, pages 64–79. IEEE
Communications Society, 1998.

[5] Dynamic Resource Allocation Controller (DRAC). March 2007
<http://www.nortel.com/drac/>.

[6] G-lambda Project. March 2007 <http://www.g-lambda.net/>.

[7] GÉANT – The pan-European research and education network. Mar 2007
<http://www.geant.net/>.

[8] GGF – The Open Grid Forum. Mar 2007 <http://www.ogf.org>.

[9] Grid Resource Allocation Agreement Protocol Working Group. Mar 2007
<https://forge.gridforum.org/projects/graap-wg/>.

[10] MPCCI - Multidisciplinary Simulations through Code-Coupling. Mar 2007
<http://www.scai.fraunhofer.de/mpcci.html/>.

[11] P. Paul and S. V. Raghavan. Survey of QoS Routing. In Proceedings of the 15th interna-
tional conference on Computer communication, Mumbai, Maharashtra, India, 2000.

[12] PHOSPHORUS - Lambda User Controlled Infrastructure for European Research. Mar
2007 <http://www.phosphorus.pl/>.

[13] G. Quecke and W. Ziegler. MeSch – An Approach to Resource Management in a Dis-
tributed Environment. In Proc. of 1st IEEE/ACM International Workshop on Grid Com-

202

puting (Grid 2000), volume 1971 of Lecture Notes in Computer Science, pages 47–54.
Springer, 2000.

[14] Simple Object Access Protocol Specification. SOAP Specification version 1.2. Web site,
2007. Online: <http://www.w3.org/TR/soap12/>.

[15] A. Streit, D. Erwin, Th. Lippert, D. Mallmann, R. Menday, M. Rambadt, M. Riedel,
M. Romberg, B. Schuller, and Ph. Wieder. UNICORE - From Project Results to Production
Grids. In L. Grandinetti, editor, Grid Computing: The New Frontiers of High Performance
Processing, Advances in Parallel Computing 14. Elsevier, 2005.

[16] User-controlled LightPaths. March 2007 <http://www.canarie.ca/canet4/uclp/>.

[17] VIOLA – Vertically Integrated Optical Testbed for Large Application in DFN. Mar 2007
<http://www.viola-testbed.de/>.

[18] O. Wäldrich, Ph.Wieder, and W. Ziegler. A Meta-scheduling Service for Co-allocating
Arbitrary Types of Resources. In Proc. of the Second Grid Resource Management Work-
shop (GRMWS’05) in conjunction with the Sixth International Conference on Parallel
Processing and Applied Mathematics (PPAM 2005), volume 3911 of Lecture Notes in
Computer Science, pages 782–791, Poznan, Poland, September 11–14, 2006. Springer.

[19] Ph. Wieder, O. Wäldrich, R. Yahyapour, and W. Ziegler. Improving Workflow execution
through SLA-based Advance Reservation. In Intregrated Research in Grid Computing,
CoreGRID Integration Workshop, pages 333 – 344, Krakow, Poland, 2006. ISBN: 83-
915141-6-1.

VI

PROGRAMMING METHODOLOGIES

ADDING METADATA TO ORC TO SUPPORT
REASONING ABOUT GRID PROGRAMS∗

Marco Aldinucci
Dept. Computer Science – University of Pisa – Italy
aldinuc@di.unipi.it

Marco Danelutto
Dept. Computer Science – University of Pisa – Italy
marcod@di.unipi.it

Peter Kilpatrick
Dept. Computer Science – Queen’s University Belfast – UK
p.kilpatrick@qub.ac.uk

Abstract Following earlier work demonstrating the utility of Orc as a means of specify-
ing and reasoning about grid applications we propose the enhancement of such
specifications with metadata that provide a means to extend an Orc specification
with implementation oriented information. We argue that such specifications
provide a useful refinement step in allowing reasoning about implementation re-
lated issues ahead of actual implementation or even prototyping. As examples,
we demonstrate how such extended specifications can be used for investigating
security related issues and for evaluating the cost of handling grid resource faults.
The approach emphasises a semi-formal style of reasoning that makes maximum
use of programmer domain knowledge and experience.

Keywords: Orc, grid, metadata, fault handling, security.

∗This research is carried out under the FP6 Network of Excellence CoreGRID funded by the European
Commission (Contract IST-2002-004265).

206

1. Introduction
Grid computing is intended to enable the development of both industrial

and scientific applications on an unprecedented scale in terms of computing
power and ubiquity. These applications are supposed to transparently handle
dynamicity and heterogeneity of computing platforms [11] and they often ex-
ploit some flavour of component programming model. Component technology
focuses (by its very nature) on the decoupled development of modules imple-
menting single features [1, 4, 5], that should then be arranged and connected to
realize the application. While several frameworks for developing grid-oriented
components exist or are under design [7–8], the models to reason about their
orchestration are still inadequate. Although a model for orchestration should
necessarily subsume a notion of component/module behaviour, it can be speci-
fied along a spectrum of abstraction levels: from the full implementation itself
to the fully logic/algebraic description. Currently, most of the effort is concen-
trated on the ends of the spectrum, which are far from the designer’s viewpoint.
For example, BPEL [6] is a recognized standard for orchestration of Web Ser-
vices, but it is designed for machine processing and is therefore not suitable
for supporting human “abstract reasoning” about orchestration. At the other
extreme, π-calculus is a well-recognized formal tool for reasoning about dis-
tributed programs [12], but it comes with a heavyweight formal framework
typically outside the interest and experience of system designers.

In earlier work we explored the use of Orc [10] as a means of specifying
and reasoning about grid computations. Orc was developed as a notation for
describing the orchestration of distributed systems, rather than the core com-
putations themselves. Orc’s primitive is the site which may be used to abstract
basic computations. A site call returns a single value or remains silent. Site
calls may be combined using three composition operators (plus recursion):
Sequential : A > x > B(x). For each output, x, from A execute an instance
of B taking x as parameter. If x is not used in B write A � B.
Parallel : A | B. The output is the interleaved outputs from each of A and B.
Asymmetric parallel : A where x :∈ B. Execute A and B in parallel until A
needs x. Take the first x delivered by B and terminate the remaining execution
of B while A continues.

We believe that Orc lies in the middle ground of the spectrum of orchestration
description: as described in previous work [3], Orc appears to be a suitable can-
didate to reason about certain non-functional properties (e.g. fault-tolerance)
of the grid-oriented muskel system [2]. In this paper we present a further step
along the same path. We enrich Orc with metadata to describe non-functional
properties such as deployment information. This could be used, for example,
to describe the mapping of application parts (e.g. components, modules) onto
a grid platform. The approach is consistent with the current trend of keeping

Adding Metadata to Orc to Support Reasoning about Grid Programs 207

decoupled the functional and non-functional aspects of an application. We be-
lieve that the use of metadata introduces a new dimension for reasoning about
the orchestration of a distributed system by allowing a narrowing of the focus
from the very general case. We expect this approach can be gracefully extended
in order to allow reasoning – at design time – about several static invariants of
the final implementation.

2. Orc metadata
A generic Orc program, as described in [10], is a set of Orc definitions

followed by an Orc goal expression. The goal expression is the expression to
be evaluated when executing the program. Assume S = {s1, . . . , ss} is the
set of sites used in the program, i.e. the set of all the sites called during the
evaluation of the goal expression (the set does not include the pre-defined sites,
such as if and Rtimer, as they are assumed to be available at any user defined
site), and E = {e0, . . . , ee} is the set including the goal expression (e0) and all
the “head” expressions appearing in the left hand sides of Orc definitions.

The set of metadata associated with an Orc program may be defined as
the set: M = {µ1, . . . , µn} where µi = 〈tj , mdk〉 with tj ∈ S ∪ E and
mdk = f(p1, . . . , pnk

). f is a generic “functor” (represented by an identifier)
and pi are generic “parameters” (variables, ground values, etc.). The metadata
mdk are not further defined as, in general, metadata structure depends on the
kind of metadata to be represented. In the following, examples of such metadata
are presented.

As is usual, the semantics of Orc is not affected when metadata is taken into
account. Rather, the introduction of metadata provides a means to restrict the
set of actual implementations which satisfy an Orc specification and thereby
eases the burden of reasoning about properties of the specification. For example,
restrictions can be placed on the relative physical placement of Orc sites in such
a way that conclusions can be drawn about their interaction which would not
be possible in the general case.

Suppose one wishes to reason about Orc program site “placement”, i.e. about
information concerning the relative positioning of Orc sites with respect to a
given set of physical resources potentially able to host one or more Orc sites.
Let R = {r1, . . . , rr} be the set of available physical resources. Then, given a
program with S = {siteA, siteB}we can consider adding to the program meta-
data such as M = {〈siteA, loc(r1)〉, 〈siteB, loc(r2)〉} modelling the situation
where siteA and siteB are placed on distinct processing resources. Define also
the auxiliary function location(x) : S × E → R as the function returning the
location of a site/expression and consider a metadata set ground if it contains
location tuples relative to all the sites in the program (that is, all sites have been
allocated to a processor).

208

loc metadata can be used to support reasoning about the “communication
costs” of Orc programs. For example, the cost of a communication with respect
to the placement of the sites involved can be characterized by distinguishing
cases:

kComm =

{
knonloc if location(s1) �= location(s2)
kloc otherwise

where s1 and s2 are the source and destination sites of the communication,
respectively and, typically, knonloc � kloc.

Consider now a second example of metadata. Suppose “secure” and “in-
secure” site locations are to be represented. Secure locations can be reached
through trusted network segments and can therefore be communicated with
while taking no particular care; insecure locations are not trusted, and can be
reached only by passing through untrusted network segments, therefore requir-
ing some kind of explicit data encryption to guarantee security. This repre-
sentation can be achieved by simply adding to the metadata tuples such as 〈si,
trusted()〉 or 〈si, untrusted()〉. Then a costing model for communications
that takes into account that transmission of encrypted data may cost significantly
more than transmission of plain data can be devised.

kSecComm =

{
kInSecComm if 〈s1, untrusted()〉 ∈ M

∨〈s2, untrusted()〉 ∈ M

kComm otherwise

2.1 Generating metadata
So far the metadata considered have been identified explicitly by the user. In

some cases he/she may not wish, or indeed be able, to supply all of the metadata
and so it may be appropriate to allow generation of metadata from partial meta-
data supplied by the user. For example, suppose the user provides only partial
location metadata, e.g. metadata relative to the goal expression location and/or
metadata relative to the location of the components of the topmost parallel com-
mand found in the Orc program execution. Metadata information available can
be used to infer ground location metadata (i.e. location metadata for all s ∈ S)
as follows. Consider two cases: in the first (completely distributed strategy)
it is assumed that each time a new site in the Orc program is encountered, the
site is “allocated” on a location that is distinct from the locations already used.
In the second case (conservative strategy) new sites are allocated in the same
location as their parent (w.r.t. the syntactic structure of the Orc program), unless
the user/programmer specifies something different in the provided metadata.

More formally, in the first case, we can state that when an Orc definition such
as E � f | g, E � f(x) where x :∈ g, E � f � g or E � f > x > g is con-
sidered, both the metadata 〈f, loc(freshLoc(M)〉 and 〈g, loc(freshLoc(M))

Adding Metadata to Orc to Support Reasoning about Grid Programs 209

are added to M. In the second case, the same Orc definitions will lead to inser-
tion in the set M of the new metadata 〈f, location(E)〉 and 〈g, location(E)〉
(provided the user did not explicitly supply site metadata information for f
and g).

Example To illustrate the use of metadata, consider the following description
of a classical task farm (embarrassingly parallel computation):

farm(pgm, nw) � tasksource | resultsink | workers(pgm, nw)
workers(pgm, nw) � | i : 1 ≤ i ≤ nw : workeri(pgm)

worker(pgm) � tasksource > t > pgm > y > resultsink(y) � worker(pgm)

A typical goal for this program will be of the form farm(myPgm, 10). Sup-
pose the user provides the metadata:

∀i ∈ [1, nw]〈workeri, loc(PEi)〉 ∈ M

〈farm(myPgm, 10), strategy(fullyDistributed)〉 ∈ M

where strategy(fullyDistributed) means the user explicitly requires that a
“completely distributed implementation” be used. An attempt to infer metadata
about the goal expression identifies location(farm(myPgm, 10)) = ⊥ but,
as the strategy requested by the user is fullyDistributed and as farm(pgm, nw)
is defined as a parallel command, the following metadata is added to M:

〈tasksource, loc(freshLoc(M))〉
〈resultsink, loc(freshLoc(M))〉
〈workers(pgm, nw), loc(freshLoc(M))〉.

Next, expanding the workers term, gives the term
| i : 1 ≤ i ≤ nw : workeri(pgm)

but in this case metadata relative to workeri has already been supplied by the
user. At this point

M = { 〈tasksource, loc(freshLoc(M))〉, 〈resultsink, loc(freshLoc(M))〉,
〈workers(pgm, nw), loc(freshLoc(M))〉, 〈worker1, loc(PE1〉, . . .,
〈workernw, loc(PEnw〉}

and therefore is ground w.r.t. the program.
Thus, in addition to the location metadata provided by the user it was possible

to derive the fact that the locations of tasksource and resultsink are distinct and,
in addition, are different from the locations of each workeri. Suppose now that
the user has also inserted the metadata item 〈PE2, untrusted()〉 in addition to
those already mentioned. That is, one of the placement locations is untrusted.
This raises the issue of how it can be determined whether or not a communi-
cation must be performed in a secure way. This information may be inferred
from the available metadata as follows. Let functions source(C) denote a site
“sending” data and sink(C) denote a site “receiving” data in communication
C. Then C must be secured iff

210

source(C) = X ∧ sink(C) = Y ∧ 〈X, loc(LX〉 ∈ M ∧ 〈Y, loc(LY 〉 ∈ M

∧ (〈LX, untrusted()〉 ∈ M ∨ 〈LY , untrusted()〉 ∈ M).

Thus, for the farm example above, the metadata 〈worker2, PE2〉 and
〈PE2, untrusted()〉 and the definition

worker2(pgm) � tasksource>t>pgm>y>resultsink�worker2(pgm)

together with the metadata 〈tasksource, loc(TS)〉, 〈resultsink, loc(RS)〉,
〈TS, trusted()〉, 〈RS, trusted()〉 lead to the conclusion that the communi-
cations represented in the Orc code by tasksource > t > pgm.compute(t)
and by pgm.compute(t) > y > resultsink within worker2 must be secured.

It is worth pointing out that the metadata considered here is typical of the
information needed when running grid applications. For example, constraints
such as the loc ones can be generated to force code (that is, sites) to be executed
on processing elements having particular features, and information such as that
modelled by untrusted metadata can be used to denote those cluster nodes that
happen to be outside a given network administrative domain and may therefore
be more easily subject to “man in the middle” attacks or to some other kind of
security related leaks.

3. Metadata exploitation
In this section we consider two alternative versions of a tool and use their Orc

specifications together with metadata to analyse their performance and security
properties. muskel [9] is a skeleton-based parallel programming environment
written in Java. muskel converts a user program to a data flow graph which is
stored in a taskpool. Program input is handled as an input token to a fresh copy
of the data flow graph placed in the taskpool. Fireable instructions (tasks) in the
taskpool are computed by a set of remote worker processors that are recruited
for the job. Each remote worker is under the supervision of a control thread
that accesses the taskpool, sends a task to its worker and places the result in the
resultpool.

The first version of muskel considered here includes a manager that is re-
sponsible for recruitment of remote workers, their allocation to control threads
and the handling of remote worker failure. This represents the original (cen-
tralized) version of muskel, but the presence of such a manager was seen as a
potential single point of failure. [3] describes how the original specification was
analysed and modified to obtain a revised (decentralized) version in which this
single point of failure was removed by making each control thread responsible
for its own remote worker recruitment. Here, using metadata, we examine the
efficiency implications of such a policy change. The Orc model of the decen-
tralized version is given in Figure 1; the Orc model of the centralized version
can be found in [3].

Adding Metadata to Orc to Support Reasoning about Grid Programs 211

systemDistribManager(pgm, tasks, contract, G, t) �
taskpool.add(tasks) | i : 1 ≤ i ≤ contract : ctrlthreadi(pgm, t, G)

ctrlthreadi(pgm, t, G) � discover(G, pgm) > rw > ctrlprocess(pgm, rw, t, G)

discover(G, pgm) � let(rw) where rw :∈ |g∈G g.can execute(pgm)

ctrlprocess(pgm, rw, t, G) � taskpool.get > tk >
(if valid � resultpool.add(r) � ctrlprocess(pgm, rw, t, G)
| if ¬valid � taskpool.add(tk)

| discover(G, pgm) > w >
ctrlprocess(pgm, w, t, G))

where (valid, r) :∈
(remoteworker(pgm, tk) > r > let(true, r)
| Rtimer(t) � let(false, 0))

Figure 1. Decentralized manager muskel specification in Orc.

3.1 Comparison of communication costs
In comparing the two versions of muskel, as is typical in such studies, the

focus will be on the “steady state” performance, that is, the typical activity of
a control thread when it is processing tasks. There are two possibilities: the
task is processed normally and the result placed in the resultpool or the remote
worker fails and the control thread requires a new worker. In analysing the
specifications a conservative placement strategy will be assumed; that is, the
sub-parts of an entity are assumed to be co-located with their parent unless
otherwise stated. Given the following metadata supplied by the developer:

∀rwi ∈ G.〈rwi, loc(PEi)〉 ∈ M

〈system, loc(C)〉 ∈ M

〈system(myPgm, tasks, 10, G, 50), strategy(conservative)〉 ∈ M

the rules for propagation and the strategy adopted ensure that the following
metadata are present for both versions:

〈rwi, loc(PEi)〉, 〈ctrlthreadi, loc(C)〉, 〈taskpool, loc(C)〉, 〈resultpool, loc(C)〉,
〈rworkerpool, loc(C)〉.

In addition, for the decentralized version, 〈cntrlprocess, loc(C)〉 is present.

Normal processing For the centralized version, examination of the definition
of cntrlthread shows that in the case of a normal calculation the following
sequence of actions will occur:

taskpool.get > tk > remw(pgm, tk) > r > let(true, r) � resultpool.add(r).

Using the metadata, and reasoning in the same way as in the farm example,
it can be seen that the communication of the task tk to the remote worker and

212

the subsequent return of the result r to the control thread represent non-local
communications; all other communications in this sequence are local.

Similar analysis of the decentralized version reveals an identical series of
actions for normal processing and an identical pattern of communications. Nat-
urally then, similar results from the two versions for normal processing would
be expected, and indeed this is borne out by experiment - see section 4.

Fault processing Now consider the situation where a remote worker fails dur-
ing the processing of a task. In both versions the Rtimer timeout occurs, the
task being processed is returned to the taskpool and a new worker is recruited.
In the centralized version the following sequence of events occurs:

taskpool.get � Rtimer(t) � let(false, 0) � taskpool.add(tk) �
rworkerpool.get(remw)

while in the decentralized version the events are effectively:
taskpool.get � Rtimer(t) � let(false, 0) � taskpool.add(tk) �
rw.can execute(pgm) > rw > let(g)

where rw is the first site in G to respond.
Analysis of these sequences together with the metadata reveals that the com-

parison reduces to the local communication to the rworkerpool in the centralized
version versus the non-local call to the remote site rw in the decentralized ver-
sion. This comparison would suggest that, in the case of fault handling, the
centralized version would be faster than the decentralized version and, again,
this is borne out by experiment.

3.2 Comparison of security costs
Consider now the issue of security. Suppose that one of the remote workers,

say rw2, is in a non-trusted location (that is 〈PE2, untrusted()〉 ∈ M). The
implications of this can be determined by analysing the specification together
with the metadata. In this case, as 〈rw2, loc(PE2)〉 ∈ M we can conclude that
cntrlthread2 will be affected (while it is operating with its initially allocated
remote worker) to the extent that the communications to and from its remote
worker must be secured. This prompts reworking of the specification to split the
control threads into two parallel sets: those requiring secure communications
and those operating exclusively in trusted environments. In this way the effect,
and hence cost, of securing communications can be minimised. Experimental
results in section 4 illustrate the cost of securing the communications with
differing numbers of control threads.

Adding Metadata to Orc to Support Reasoning about Grid Programs 213

4. Experimental results
We ran several experiments, on a distributed configuration of Linux ma-

chines, aimed at verifying that the results obtained from analysis of the Orc
specifications of muskel together with metadata are consistent with practice.

We first verified that centralized and decentralized manager versions of
muskel perform the same (up to a reasonable percentage difference) when
no faults occur in the resources used for remote program execution. We ran the
same muskel program with both the centralized and the decentralized muskel
implementation, using up to 4 processing elements for the remote macro data
flow interpreter instances: we obtained differences in completion time not ex-
ceeding 1.6% (1.05% average).

Figure 2. Comparison of runs involving differ-
ent percentages of untrusted locations

Then we considered remote re-
source failure. We measured the
time spent in handling a single fault
in several runs on both centralized
and decentralized muskel versions.
The distributed version takes longer
to handle a single fault, as expected
looking at the Orc models of the two
implementations: 128.4 vs. 114.4
msecs, average. Finally, we at-
tempted to verify the effectiveness
of limiting secure mechanism us-
age to communications involving
untrusted nodes, which may be identified by examination of the Orc speci-
fications with associated metadata. Figure 2 shows the completion time of a
muskel program whose remote worker sites are running on a variable mix of
trusted and untrusted locations. The greater the number of remote interpreters
exploited using secure mechanisms, the lower the performance values that are
achieved. Therefore, restricting the classification of insecure nodes by analysis
of metadata results in better efficiency on the target architecture.

5. Conclusions
We have shown how, by associating metadata with an Orc specification, we

can reason about the specification and that this reasoning carries through to the
actual grid code which implements the specification. In particular, we consid-
ered how user provided metadata can be associated with the Orc model of a real
structured grid programming environment (muskel) and showed how this could
be used to perform qualitative performance comparison between two different
versions of the programming environment, as well as to determine how the
overhead introduced by security techniques can be minimized. We compared

214

these theoretical results with actual experimental results and verified that they
qualitatively match. Thus, the availability of an Orc model on which to “hang”
the metadata allows metadata to be exploited before the actual implementation
is available. We are currently working to formalize and automate the techniques
discussed here. In particular, we are aiming to implement tools to support the
metadata propagation and reasoning procedures adopted. It should be noted,
however, that the whole approach, based on Orc, as described here and in [3]
encourages the use of semi-formal reasoning to support program development
(both program design and refinement). (Thus, for example, the equivalence of
Orc specifications and the muskel implementations is not formally proven.)
We believe this approach has the potential to reduce substantially experimenta-
tion by allowing the exploration of alternatives prior to costly implementation
and without recourse to full-blown formal treatment.

References
[1] M. Aldinucci, S. Campa, M. Coppola, M. Danelutto, D. Laforenza, D. Puppin, L. Scarponi,

M. Vanneschi, and C. Zoccolo. Components for high performance grid programming in
grid.it. Proc. of the Intl. Workshop on Component Models and Systems for Grid Applica-
tions, CoreGRID series, pages 19–38, Saint-Malo, France, Jan. 2005. Springer.

[2] M. Aldinucci and M. Danelutto. Algorithmic skeletons meeting grids. Parallel Computing,
32(7):449–462, 2006. DOI:10.1016/j.parco.2006.04.001.

[3] M. Aldinucci, M. Danelutto, and P. Kilpatrick. Management in distributed systems: a
semi-formal approach. TR-07-05, Univ. of Pisa, Dept. of Comp. Science, Feb. 2007.

[4] M. Alt, J. Dünnweber, J. Müller, and S. Gorlatch. HOCs: Higher-order components for
grids. In Component Models and Systems for Grid Applications, CoreGRID series, pages
157–166. Springer, Jan. 2005.

[5] F. Baude, D. Caromel, and M. Morel. On hierarchical, parallel and distributed components
for grid programming. Proc. of the Intl. Workshop on Component Models and Systems
for Grid Applications, CoreGRID series, pages 97–108, Jan. 2005. Springer.

[6] Business Process Execution Language for Web Services version 1.1, 2007. http://www-
128.ibm.com/developerworks/library/specification/ws-bpel/.

[7] The Common Component Architecture Forum, 2007. http://www.cca-forum.org/.

[8] CoreGRID NoE deliverable series, Institute on Programming Model. Deliverable
D.PM.04 – Basic Features of the Grid Component Model (assessed), Feb. 2007.

[9] M. Danelutto and P. Dazzi. Joint structured/non structured parallelism exploitation through
data flow. Proc. of ICCS: Intl. Conference on Computational Science, WS on Practical
Aspects of High-level Parallel Programming, LNCS, Reading, UK, May 2006. Springer.

[10] J. Misra and W. R. Cook. Computation orchestration: A basis for a wide-area computing.
Software and Systems Modeling, 2006. DOI 10.1007/s10270-006-0012-1.

[11] Next Generation GRIDs Expert Group. Future for European Grids: GRIDs and Ser-
vice Oriented Knowledge Utilities. Vision and Research Directions 2010 and Beyond,
http://cordis.europa.eu/ist/grids/ngg.htm, 2006.

[12] H. Smith and P. Fingar. Workflow is just a pi process. BPTrends, pages 1–36, 2004.

A FRAMEWORK FOR ANALYSIS
OF LEGACY CODE MIGRATION
TO GRID ENVIRONMENT

Srujan Kumar Enaganti, Anish Damodaran and Anirban Chakrabarti
Software Engineering and Technology Laboratory,
Infosys Technologies Limited,
bangalore, India
Srujan Enaganti@infosys.com

Anish Damodaran@infosys.com

Anirban Chakrabarti@infosys.com

Abstract Enterprises are looking at Grid computing as a technology of enormous potential.
However, there are several issues which require immediate attention before Grid
can become an important component of the IT infrastructure. One such issue
is migration of legacy applications to the Grid environment. In such cases, it
becomes imperative to understand whether the application performance would
significantly improve on migration. In this paper an attempt is made to pro-
vide a systematic framework called the Grid Application Migration Framework
(GAMF) for handling the migration process. The framework consists of Grid
Code Analyzer (GCA), an independently deployable component which generates
a Directed Acyclic Graph (DAG). The paper also proposes a DAG reducer algo-
rithm for reducing the DAG. The framework is tested with several proprietary
and open source C as well as Java codes. In the paper, we take three sample open
source applications and demonstrate the usefulness of the framework. Finally,
a small sample is analyzed and recoded to show that validity of the proposed
mechanisms.

Keywords: Legacy Code Migration, Grid Environment, Gridizability, Application Engineer-
ing, Parallel Programming, Grid Code Analyzer, Clusters, Simulator.

216

1. Introduction
Last few years have witnessed a surge of interest in the area of Grid com-

puting. The e-science community and enterprises, especially those in fields of
Life Sciences, Energy, Finance, and Retail are realizing the potential of Grid
computing and investing heavily on Grid deployment. Designing, developing
and migrating legacy enterprise applications to Grid has become critical for suc-
cessful Grid adoption. Migrating legacy applications to Grid assumes special
importance as many applications like analytical applications, back end applica-
tions and applications dealing with huge data are being seen as prime candidates
for Grid deployment for high performance and throughput. Migration typically
involves significant investments in terms of domain knowledge and specialists
judgments on application analysis and re-engineering. However, to take Grid
to the enterprises efforts need to be undertaken to analyze the performance of
the legacy code running in a Grid-based infrastructure. The approach described
in this paper attempts to fill the void through the Grid Application Migration
Framework (GAMF). The framework accepts a legacy code as input; analyzes
it and then runs the analyzed code through a simulator. The performance of the
application can be tested and re-engineering decisions can be made.

1.1 Background
The research in the area of parallel programming and Application Engi-

neering can be broadly divided into three main categories: designing parallel
applications, analyzing existing applications, and scheduling parallel applica-
tion tasks. The research in the first category has led to the development of
programming languages like parallel C/C++ and data parallel directives like
High Performance Fortran. Specifications and libraries like Message Passing
Interface (MPI)[1] and Parallel Virtual Machines(PVM)[2] are frequently used
to execute parallel programs on clusters. The programming constructs, such
as P-threads or more recently OpenMP [3], are used in writing multi-threaded
or concurrent programs in SMP systems. The second relevant category of
research concentrated on analyzing program dependencies and program ex-
ecution patterns for more efficient program writing. The efforts resulted in
the development of efficient techniques for program analysis like dependency
analysis, loop analysis, pointer analysis, and so on, in different programming
languages. The third category of research looks at efficient ways of scheduling
and clustering parallel tasks to a distributed infrastructure. There are several
clustering techniques like DSC[4], EZ[5], and scheduling techniques like ETF
[6]are widely deployed. In [7], the authors provide a comprehensive overview
of different scheduling and clustering techniques available in literature.

A Framework for Analysis of Legacy Code Migration to Grid Environment 217

1.2 Motivation & Objectives
When we look at the issue of migrating applications to the Grid system, all

the issues mentioned in the previous sub-section come to the fore. Before re-
engineering any legacy applications to the Grid infrastructure, the amount of
performance benefit one gets when one converts a legacy application to a Grid
specific application needs to be analyzed. Applications in enterprises have a lot
of complexities in terms of data, module between different components. Before
an application is migrated to a Grid environment, it can be parallelized after
taking into account the application level dependencies (see Table 1) so that the
performance can be improved by distributing the application across the Grid.
In our search for solution to the legacy code migration problem, we came across
some standalone research. However, there is a dearth of a complete solution
to address this important problem. Some of the well-known work includes
Parallax[8], PYRROS[9], P-Grade[10], CASCH[11] etc. After analyzing the
space, we found that a framework is needed to be developed which analyzes
enterprise applications and provides inputs for re-engineering, which formed
the motivation for this paper.

The objectives of the paper include (i) To propose a systematic framework
for analysis of legacy code migration on to a Grid environment, (ii) To analyze
sample applications using the proposed framework, (iii) To validate the frame-
work by implementing it on a sample code. The organization of the paper is
as follows: In Section 2, we describe an overview of the GAMF framework.
In Section 3 we describe the results of simulation and sample implementation.
Finally we conclude and provide pointers for future work in Section 4.

2. Grid Application Migration Framework
The work described in this paper consists of an end-to-end framework with

three components, namely, Grid Code Analyzer, DAG reduction algorithms, and
the Grid Simulator, which together form a framework to assess the gridizability
of an application. The Grid Code Analyzer (GCA) component analyzes and
profiles the source code and binary of a program through static and execution
analysis. The GCA component takes a legacy program written in C as input and
generates a Directed Acyclic Graph (DAG) which depicts both task and data
dependencies among the components of the program. The DAG consists of
nodes and edges where nodes indicate the processing times of different virtual
blocks (see Table 1) of the program. The edges indicate the communication
cost between the blocks. However, the DAG creates a large number of nodes
which may hamper analysis. Therefore, we have designed a DAG Reduction
algorithm which acts on the DAG to create a reduced DAG. The reduced DAG is
then passed through a clustering algorithm like EZ or DSC to create tasks which
indicate parallel tasks that can be put onto the Grid infrastructure. Finally, the

218

Table 1. Important Definitions

Name Definition
Dependency Dependency is created when one portion of an application depends on another

for its execution

Loop It refers to situation in which there is a bidirectional dependency between two
nodes in a DAG

Virtual Block It is the minimum granular block that ensures that resultant graph is a DAG, i.e.
without any loops

memmap It is a data structure (implemented as an AVL tree) that maintains an updatable
record of memory allocated on heap during the execution of legacy application.

Instrument String Instrument strings are functions that represent different dependencies. They
store information required to create the dependencies.

Node Weight(ui) In this paper, we have taken it as the CPU time taken to execute it (calculated by
making C system calls). The term ui is used to refer to the weight of node ni.

Edge Weight(wij) In this paper, we have taken it as the cost of communication between processors
executing the codes. wij is the weight of edge connecting nodes ni and nj . If
no such edge exists, it is to be taken as zero

Dag Reducer(β) It is normalizing factor with which each edge-weight is divided before the DAG
is passed to DAG reducer algorithm. Hence, it defines the amount a DAG is
reduced by the algorithm.

Grid Simulator (GS) simulates the actual Grid execution by taking the reduced
clustered task graph as input and schedules the tasks on different processors in
the Grid. The performance data is then analyzed to study the benefits of porting
the application to Grid. The framework helps specialists to make informed
decisions during the migration process.

2.1 Grid Code Analyzer(GCA)
The two components of GCA are Static Analyzer and Dynamic Analyzer

(Details in [12]). Static Analyzer consists of two main components: Parser
and Code Instrumentor. Static analyzer uses a parser to parse the code and
represent them in the Symbol Table. The Symbol Table maintains the details of
the various symbols like types, constants, functions and variables declared in the
program. The Code Instrumentor instruments the code once the dependencies
have been established and instrument strings are inserted into the source code to
be used during dynamic analysis. The Dynamic Analyzer collects the runtime
information of a program according to the instrumented strings placed in the
code. The Dynamic Analyzer uses the symbol table from the static analysis to
process the instrumented code. A DAG is constructed where nodes represent
the block execution times while edges represent data flow between these blocks.
In addition, data in the form of files, data sources, network etc. can be tracked
and modeled in the DAG.

A Framework for Analysis of Legacy Code Migration to Grid Environment 219

2.2 Sample Application Profiling
As mentioned in the previous section, GCA is a useful tool for profiling

applications for the purpose of grid-enabling them. As part of the exercise,
we have selected 25 different applications from different domains with varying
sizes. We have selected two open source applications[13] and one proprietary
application among them for illustrative purpose throughout the paper. The
applications are described in Table 2.

Table 2. Description of Algorithms

App Name Description App Feature

App 1 Path Finding Algorithm Memory and CPU intensive

App 2 Password Quality Identifier Highly compute intensive

App 3 Reflection of spheres in space Compute intensive

(a) App 1 (b) App 2 (c) App 3

Figure 1. DAG Profiles for three sample applications

Let us illustrate the output of the GCA tool. Figure 1 shows the output of the
GCA tool run over App 1 to App 3. The applications mentioned in Table 2 are
then profiled using the GCA tool. The node weights are then plotted as shown
in figures 1(a) to 1(c). The profiles of the applications show that the node
weights follow multi-modal distribution. The application profiles show that
there are a large number of nodes having low weights and a relatively smaller
number of nodes having larger node weights. For example in figure 4a, there
are an insignificant number of nodes with weight more than 400 and hence the
curve dies down there after. This is intuitive as applications are loaded with
statements or functions which take very little CPU time, like the initialization or
assignment statements. Figures 1(b) and 1(c) also show similar trend as nodes
with larger node weights tend to zero after some node weight. The above results
imply that the computationally smaller functions may not have significant effect
on the final performance of the application. A small application may have
1000-2000 nodes which require significant time to analyze. As most of these
nodes have little or no effect on the ultimate performance, there is a need to

220

design DAG Reduction algorithm. This motivates us to design a DAG reduction
algorithm based on combining the smaller functions with the larger ones without
performance degradation.

2.3 DAG Reduction Algorithm
The next step of the GAMF is the DAG reduction algorithm. The DAG

reduction algorithm creates a reduced DAG by combining nodes so that the
weight of the combined node is greater than that of a threshold value T. The
threshold value is computed by dividing the maximum edge weight of the DAG
by the DAG Reducer (β) (see Table 1).

Merging Function
Step 1: Sort the node weights (ui) in ascending order.
Step 2: Select the node with lowest weight. Call the Loop Checking Function (Node, Parent) to check
if a loop is created when the node is combined with its predecessor. In case of multiple predecessors,
one of them is picked randomly.
(a) In case a loop is detected: The combination is rejected
(b) In case of no loop: The node is combined with the parent and a single combined node is created
Step 3: The new weight of the combined node is calculated by adding the node’s weight with the
parent’s
Step 4: The node list is re-sorted
Step 5: Carry Step 2-4, until all the nodes having weights less than T are traversed
Loop Checking Function (Node, Parent)
Check whether there is any incoming edge to Node from any node N, such that predecessor of N is
Parent node.

Figure 2. DAG Reduction Algorithm

The principle behind the DAG reduction algorithm is quite intuitive. It re-
duces the DAG by removing the smaller nodes from the DAG which have less
significant effect on the overall performance of the application. The reduction
is carried out and the DAG Reducer (β) is varied by increasing the Granularity
(g)[14] and Coarse Granularity (c) parameters so that a trade-off between per-
formance and scalability (running time) of the algorithm can be achieved. Since
all the blocks on DAG nodes whose weights are less than T have relatively low
execution time, the algorithm merges them with each of the incident nodes. The
intuition behind such an action is that the block is small and can be relocated
in the incident blocks or the calling block. By doing so, we want to make sure
that Coarse Granularity of resultant graph is greater than one. It can be proved
that if coarse granularity is greater than one, granularity will also exceed one.
A. Gerasoulis and T. Yang have proved that for any coarse grain graph (c > 1),
there is a optimal clustering followed by scheduling that makes the parallel time
of execution on a fully connected grid at most two times the optimal parallel
time [14]. Hence, by making sure that coarse granularity is greater than one, we
make sure that we can get suboptimal solution for parallelizing the application
on to a fully connected grid.

A Framework for Analysis of Legacy Code Migration to Grid Environment 221

2.4 Clustering & Grid Simulator(GS)
Clustering is the step that succeeds Reduction during application analysis.

The reduced DAG obtained by application of Reduction algorithm is handed
to the clustering algorithm for creating clusters. Clusters provide indication
of the possible parallel codes by grouping the nodes of the DAG. We used
Edge-Zeroing (EZ) for our purpose [5]. EZ algorithm successively performs
edge-zeroings of edges in the decreasing order of their weights making sure that
at every step parallel time to execute the resultant DAG obtained after zeroing
is less than the parallel time taken before doing zeroing. Since edge weights are
quantified by communication cost, zeroing an edge can be considered equivalent
to allocating two nodes of the edge on the same processor for more optimal
performance. Parallel time is calculated by calculating the same assuming that
there are as many processors as the number of clusters formed in the DAG.
The latter is the same as calculation of critical path of the DAG with clusters.
Finally a clustered DAG is resulted to be used for further analysis. The third
component of the GAMF is the Grid Simulator (GS). GS takes the clustered
graph as input and simulates its performance on a grid consisting of processors
which are fully connected. Grid Infrastructure is modeled by processors, links,
and data elements. Processors are defined having a specific processing power,
while links have been modeled having a specific link capacity. The processing
powers, link capacities of processors and links are given as input to simulator
along with the DAG(s). Different scheduling algorithms like Round Robin,
Priority based, Match Making have also been implemented to schedule jobs
among processors. However, noting the specific requirements in our case, we
decided to build the simulator using JavaSim [15].

3. Results
The three sample applications were analyzed using the GAMF framework.

Two parameters have been used for evaluation purposes: (i)Performance Gain
(PG) indicates the performance gain achieved by means of parallelization and
it is calculated as the ratio of the running time of the sequential application to
the parallelized one. (ii)Reduction Ratio(RR) defines the amount of reduction
that can be achieved using the β parameter and is calculated as the ratio of the
number of DAG nodes before to number of nodes after the reduction process.
There is a big difference between parameters β and RR. While β is an input
parameter, RR is the actual reduction that can be achieved.

3.1 Simulation Results - Performance Gain
The Performance Gain(PG) for the 3 sample applications are varied with

the β value. For App 1, which is very memory and compute intensive,the

222

Performance Gain is very significant, the max value reaches around 40. A β
value of 0.7 provides a good trade-off. The result is shown in figure 3(a).

(a) App 1 (b) App 2

Figure 3. PG Variation for (a) App 1 and (b) App 2

Now, we come to App 2’s Performance Gain. This is a compute intensive
program with the maximum gain attained around 2.5 due to lots of dependencies
in the program. A β value of 0.7 is a good trade-off. Please note the difference
in the values of between App 1 and App 2. As App 1 is a memory intensive
program, several high cost edges exist which get reduced in case of low β
resulting in significant loss of information. Therefore, for high edge graphs or
memory intensive programs, it is advisable to keep β close to 1. Now, we look
at App 3. This is a compute intensive program with good parallelization scope
as is evident from a high gain of 11. A β value of 0.5 provides a good trade-off.

Figure 4. PG Variation for App 3 Figure 5. Variation of RR with β

3.2 Simulation Results - Reduction Ratio
Figure 5 shows the variation of the Reduction Ratio of the three sample

applications with β. The trends are more or less similar here. For low values
of β the Reduction Ratio does not change significantly. The change is really
significant as the β value reaches close to 1. If we look at the figure(s) 3,
we will find that it is in the low values of β where the maximum increase in
Performance Gain takes place. The figure 3, therefore, is significant. It shows
that with slight decrease in the β value, a significant reduction is achieved to
the extent of nearly 50-70%. After the initial reduction, decreasing β further
causes only slight reduction. However, while the initial sets of reduction lend
itself slightly to the Performance Gain, the latter reduction (though small in

A Framework for Analysis of Legacy Code Migration to Grid Environment 223

comparison) has more significant effect. The reason is that the reduction of β
at higher values reduces the high cost nodes resulting in more tangible effect on
the ultimate performance. Therefore, figures 3, 4 and 5 motivate us in designing
a β at 0.7 which causes a significant reduction, since the running time of EZ
clustering algorithm is of the order of O(v(e+v)) where e indicates the number
of edges and v indicates the number of nodes.

3.3 Sample Implementation

Figure 6. The formation of Different Clusters

The next phase is to validate the results of the analysis through actual imple-
mentation. Implementation based on the technique mentioned in the paper has
been carried on for several proprietary codes and the results are within 10-15%
of that provided by the simulator. The output is then passed through the DAG
Reducer and the clustering algorithms. The resultant output is as shown in
figure 6. The algorithm creates four clusters. Running the output through the
simulator with equal performing node shows that a four node grid will achieve
a Performance Gain of 3.26. The program was re-written using simple MPI
libraries and the actual performance came to about 3.19 which is reasonably
close to the simulation result.

4. Conclusions
Migration of legacy applications to the Grid environment is an important and

challenging problem. It is challenging as holistic solutions are not available in
this domain. This paper is an effort to fill the void. In this paper, we have
proposed a Grid Application Migration Framework (GAMF) which consists
of three independently deployable components: Grid Code Analyzer (GCA),
DAG Reducer/Cluster Generator (DAGRCG) and Grid Simulator (GS). As part
of DAGRCG, we have proposed a DAG Reduction algorithm which can reduce

224

DAGs by 50-70% with very little performance degradation. Reduction and
Cluster Generation are two separate independent tasks themselves, we embed-
ded them in one single component for the convenience of using it directly after
GCA and prior to GS. The framework can predict the performance of applica-
tions with very high accuracy and is very useful for analysis of Grid application
migration.The framework discussed in this paper is part of an ongoing project
on Application Engineering. In addition, other efforts which will be taken up in
near future are:(i)Inclusion of more legacy applications like COBOL, PL1 into
the fold of GAMF. (ii)Data parallelization through data splitting for speeding
up applications. (iii)Development of a ROI model to identify the economic
viability of the migration process.

References
[1] W. Gropp, E. Lusk and A. Skjellum. Using MPI, 2nd edition MIT Press, Nov 1999.

[2] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PVM: Parallel
Virtual Machine - A User’s Guide and Tutorial for Networked Parallel Programming MIT
Press, May 1994.

[3] L. Dagum and R. Menon. OpenMP: An Industry-Standard API for Shared-Memory Pro-
gramming IEEE Computational Science and Engineering vol. 5, no. 1, Jan 1998.

[4] T. Yang and A. Gerasoulis. DSC: Scheduling parallel tasks on an unbounded number of
processors. IEEE Trans. Parallel Distrib. Syst., vol. 5, no. 9 pages 951-967, Sept 1994.

[5] V. Sarkar. Patitioning and Scheduling Parallel Programs for Multiprocessors May 1989.

[6] J.J. Hwang, Y-C. Chow, F.D. Anger and C.Y. Lee. Scheduling precedence graphs in sys-
tems with interprocessor communication times. SIAM J. Comput., vol. 18, Apr 1989.

[7] Y-K. Kwok and I. Ahmed. Static Scheduling Algorithms for Allocating Directed Task
Graphs to Multiprocessors. ACM Computing Surveys, vol. 31, no. 4, Dec 1999.

[8] T.G. Lewis and H. El-Rewini. Parallax: A Tool for Parallel Program Scheduling. IEEE
Parallel and Distributed Technology, vol. 1, no. 3, pages 62-72, May 1993.

[9] T. Yang and A. Gerasoulis. PYRROS: Static Task Scheduling and Code Generation for
Message-Passing Multiprocessors. Proc. 6th ACM Int’l Conf. SuperComputing, pages
428-433, ACM Press, New York, 1992.

[10] P-Grade Team. Parallel Grid Runtime and Application Development Environment. User’s
Manual Version 8.4.2, http://www.lpds.sztaki.hu/ smith/pgrade-manual/manual.html, ac-
cessed on 21st April, 2006.

[11] I. Ahmed, Y-K. Kwok, M-Y. Wu, and W. Shu. CASCH: A Tool for Computer-Aided
Scheduling IEEE Concurrency, Oct 2000.

[12] R. Nallan, A. Chakrabarti, S. Sengupta, and A. Upadhyay. A Systematic Approach for
Application Migration in a Grid Computing Environment. Asia Pacific Services Computing
Conf.(APSCC), China, Dec 2006.

[13] http://www.acm.inf.ethz.ch/ProblemSetArchive/B EU SWERC/1998/index.html.

[14] A.Gerasoulis and T. Yang. On the granularity and clustering of directed acyclic task graphs.
IEEE Transactions on Parallel and Distributed Systems, vol. 4, no. 6, June 1993.

[15] Javasim available at http://javasim.ncl.ac.uk/

SIMPLIFYING GRID APPLICATION
PROGRAMMING USING WEB-ENABLED
CODE TRANSFER TOOLS

Cǎtǎlin L. Dumitrescu, Jan Dünnweber, Philipp Lüdeking, Sergei Gorlatch
Department of Mathematics and Computer Science, University of Münster, Germany
CoreGRID Institute on Programming Models
{dumitres,duennweb,muli,gorlatch}@uni-muenster.de

Ioan Raicu
Department of Computer Science, University of Chicago, USA

Ian Foster
Department of Computer Science, University of Chicago, USA
Mathematics and Computer Science Division, Argonne National Laboratory, USA
{iraicu,foster}@cs.uchicago.edu

Abstract This paper deals with one of the fundamental properties of grid computing –
transferring code between grid nodes and executing it remotely on heteroge-
neous hosts. Contemporary middleware relies for this purpose on Web Services,
which makes application programs complicated and low-level and requires much
additional expertise from programmers. We compare two mechanisms for grid
application programming with regard to their handling of code transfer – the
de-facto standard WS-GRAM in Globus and the higher-level approach based on
HOCs (Higher-Order Components). We study the advantages and problems of
each approach using a real-world application case study – the sequent alignment
problem from bioinformatics. Our experiments show the trade-off between re-
duced development costs and software complexity when HOCs are used and the
higher performance of the applications on the grid when using WS-GRAM.

Keywords: Distributed Systems, Resource Management, Service Level Agreements

This research work was supported in part under the FP6 Network of Excellence CoreGRID funded by the
European Commission (Contract IST-2002-004265).

226

1. Introduction
Grids aim to provide a transparent access to large-scale computing, network-

ing, and storage resources. A fundamental property of grid applications is the
transfer of not only data but also executable code between the nodes of the grid.
Contemporary middleware, for example the Globus Toolkit, relies on Web Ser-
vices for this purpose, such that a typical grid application usually consists of
two parts: a) an operational part that handles computations in a parallel and
distributed manner, and b) a declarative part which includes resource specifi-
cations, interface definitions, deployment descriptors etc., in an XML-based
format; it describes, e. g. , how to encode a program for transmission and how
to invoke code on a remote host. Therefore, grid application programming
remains a quite low-level, complicated task that requires from the programmer
much additional expertise beyond his particular application area.

In this paper, we study and compare two approaches to grid application
programming with regard to how they manage the aspect of code transfer:

The first approach is the Globus Resource Allocation Manager (WS-
GRAM [2]) which is currently the most often used solution. In WS-
GRAM, code is packaged as a job which is a Web service parameter
of a special type. Each job carries an executable program, packaged
together with a description of the parameters this program expects and the
program’s requirements concerning the processors and libraries available
on the execution platform. WS-GRAM extends the Web service standards
(WSDL and SOAP [15]) by a descriptive XML-based language RSL [2]
for job definitions, since usually the types used for the parameters of Web
services are plain data types rather than executable programs. Contrary
to the static interface of a Web service, users upload RSL definitions to
the service at runtime.
The second approach seeks to raise the level of programming abstrac-
tion by relying on Higher-Order Components (HOCs [6]). HOCs are
application-level components: they provide implementations of typical,
recurrently used coordination patterns in parallel applications. HOC
users implement only application-specific operations and pass them to
the HOCs as code parameters. The Service Architecture for HOCs
(HOC-SA [3]) is currently a Globus incubator project [4]. Using HOCs,
the work of application programmers and the amount of code transferred
in the grid is fairly reduced, because much work is done by HOC-SA.

In the remainder of the paper, we compare the process of grid application
programming using these two approaches: WS-GRAM and HOC-SA. After
describing the general properties of the both approaches in Section 2, we con-
sider in Section 3 a particular application example - detection of similarities

Code Transfer Tools for Grid Programming 227

in genome sequences - and present how this application is implemented using
each of the two approaches. In Section 4, we describe the results of extensive
experiments with the genome sequence application which demonstrate the per-
formance and the development costs of the application when using WS-GRAM
and HOC-SA. We discuss related work and conclude in Section 5.

2. Grid Programming with WS-GRAM and the HOC-SA
From the user’s viewpoint, a possibility to request the processing of appli-

cation tasks over the Internet instead of only downloading application data is
probably the feature which makes the grid most distinct from the Web.

2.1 Code transfer and Web services
The technology enabling the remote processing of application tasks is cur-

rently Web services in most grid middleware systems. Web services were
created with the aim of increasing the interoperability among heterogeneous
platforms by handling the exchange of data over the network using portable
formats. The parameters accepted by a Web service must be encoded in an
XML document. For any Web service this document must adhere to an XML
Schema which the service developer writes into the WSDL description of the
service interface [15]. However, Web services were not designed to exchange
executable code. There is no representation for executable code in the XML
Schema format. Therefore, Web service developers must declare code as plain
data skipping the context information about the code, i. e. , the information
about how to invoke the code from within another program is potentially not
available to the execution host, as explained in the following.

Generally, there are two different types of code a client can upload to a
server in a distributed system: a self-contained program or a part of a program.
Both types must be invoked in a different manner. In the case that clients
upload a self-contained program, the context information required to invoke
this program consists of the data format and sequence of the program input.
Moreover the libraries, command line arguments, environment variables and
also parameters like, e. g. , the number of MPI processes used in the program
must be communicated to the executing server. A Java class containing its own
main method also falls under the category of self-contained programs: it is a
portable binary that requires the same context information for remote execution
as a native binary program.

In the second case, if the code uploaded by a client is only a part of a
program, it must be a well-defined entity in the full program, e. g. , a class or
block which contains one or multiple procedure definitions. To insert this entity
remotely into the proper context, the executing server requires information
about the code format (source or binary) and programming language, which

228

is not necessarily the case for self-contained programs, as these are either in a
binary format or scripts that can be interpreted by the remote shell. To execute
non-self-contained code remotely, the interface for accessing this code within
the server-side context, i. e. , the signatures of the procedures inside, must be
declared in a file available to the execution host which must assign proper
variable types to input and output. Both, command line options and interfaces
have no standard representation in XML Schema making it difficult to define
Web service interfaces for transferring any code, full or partial programs.

Thus, the code transfer problem that we address in this paper originates
from the fact that the context information of a local code, i. e. , the required
information on how to execute it, is potentially lost when the code is transferred
as a Web service parameter from one context (e. g. , a client program) to another.

2.2 Web-enabled Code Transfer with WS-GRAM
Fig. 1 shows how the WS-GRAM service of Globus avoids the potential

loss of information discussed above, when full programs are transferred: The
client code (left in the figure) contains a call to WS-GRAM where application
code is submitted as a job to the execution hosts. The shaded hexagons in the
WS-GRAM job represent processes connected by arrows representing message
exchange.

Client
Web

service

WS- GRAM
Job

submit

HPC Hardware
RSL Declarations

Application
Code

Library

Code

use provide

execute

Figure 1. Code Transfer via Job submission in WS-GRAM

Besides the application code, the client sends one RSL declaration per job.
The programmer must write these declarations to provide the information about
how to invoke the transferred code to the execution hosts. RSL files are uploaded
by WS-GRAM users at runtime together with the code described therein. RSL
belongs to the declarative part of a WS-GRAM application and extends the
static configuration which any Web service-based software requires (WSDD &
WSDL [15]). While the introduction of RSL to the Web service configuration
enables the use of different kinds of executable code as Web service parameters,
WS-GRAM requires users to be familiar both with the service configuration and
with RSL. In Fig. 1, there is one RSL declaration document per application unit
(transferred in a single submission, typically a class).

Code Transfer Tools for Grid Programming 229

2.3 Web-enabled Code Transfer with HOC-SA
Higher-Order Components (HOCs) handle the platform-specific work au-

tomatically (data format conversions etc.) and require only the application-
specific pieces of code being sent to them. This principle is depicted in Fig. 2:
The client runs an application that uses a HOC which executes on the remote
High-Performance Computers (HPC) with code parameters provided by the
client. The HOC - Service Architecture (HOC-SA) provides a solution for
code transfer in which only a part of a program is sent over the network. While
the generic components (HOCs) are pre-installed, the application-specific code
parameters are transferred on demand (i. e. , at runtime as explained in the fol-
lowing). HOC-SA adds to WS-GRAM two elements, the Code Service and the
Remote Code Loader. However, HOC-SA makes the situation simpler for the
user as compared to WS-GRAM, since the upload of code (step � in Fig. 2) is
decoupled from using the code (step �), as explained in the next paragraph.

code param
code param

Web

service

Web

service

A

A

A
B

B

HOC

Client
request

upload
Code
Service

Web

service

1

2

3

4

A

B Application
Code

B

Library
Code

use provide

HPC Hardwareconversion

download

Remote Code
 Loader

execute

Figure 2. Code Transfer to a component (HOC) via the HOC-SA

In the upload step �, the application code is intermediately stored in the
Code Service, a Web service connected to a database (via OGSA-DAI [11]).
Identifiers specified by the user (A and B in the figure) are linked to the
uploaded code, making it a code parameter. Users can pass a code parameter to
a HOC by referring to its identifier. Both HOCs and their code parameters can
be reused in many different applications. The code parameter transfer (lower
part of the client-side code) is not necessarily contained in the client application,
but becomes rather an administrative action: HOC-SA includes a Web-based
portal allowing programmers to browse the Code Service and check if a code
parameter with the required functionality is available: if not, then a new code
parameter can be stored using our portal (or hand-written code). Thus, in the
HOC-SA, code transfer is separated from the application code, such that both
Code Service and Remote Code Loader are not visible to the programmer.

In the HOC(A,B)-call in step �, no code is transferred. It is an ordi-
nary Web service request that is served by a HOC. HOCs execute recurring

230

communication patterns (the pattern in Fig. 2 is called wavefront [3]; see Sec-
tion 3 for an example). For transparently inserting code parameters into appro-
priate positions in the pattern implementation, the HOC-SA performs two steps
invisible to the application programmer: in the download step �, the code that
the identifiers refer to is transferred to the HPC hardware (which is more than
one host, in case of a distributed HOC implementation). The conversion step �
is performed by the Remote Code Loader which is locally placed on the execu-
tion host(s) and makes the downloaded code parameters executable there. This
conversion is done by cast operations which assign the code parameters their
proper types. The type of HOC being used also determines the type of the code
parameters (e. g. a certain class definition), such that RSL for describing HOC
code parameters is unnecessary. In Fig. 2, the application code is much smaller
than in Fig. 1 since it represents only a piece of a program (HOC parameters)

3. Application case study for the HOC-SA and
WS-GRAM

Both WS-GRAM and HOC-SA delegate the handling of grid-specific re-
quirements like file transfer and (to a certain extend) fault-tolerance and secu-
rity to the Globus middleware [5]. However, WS-GRAM and HOC-SA provide
different means for code transfer on top of Globus, which have advantages in
different scenarios. In the following case study, we demonstrate best practices
for code transfer, using HOCs for simplifying the use of the middleware and
using WS-GRAM for giving programmer more control over the middleware
and potentially better performance.

As a case study, we present an application that detects similarities in genome
sequences. Although there are already many implementations for genome se-
quence alignment, our component-based solution features exchangeable pro-
cessing modes, such that the same distributed procedure is employed to detect
different kinds of similarities. The implementation is based on the Alignment
HOC (a GRAM-based variant without code parameters is shown in Section 4).
It fills a scoring matrix that rates differences between character sequence pairs:
each matrix element holds the result of a user-defined scoring function applied
to the two input subsequences, delimited by the element’s indices. Besides
the scoring function, the Alignment HOC has two more code parameters: the
alignment function and the traceback function. The alignment function is used
to iterate over the sequences and compute the scores, i. e. , the users are in con-
trol over the computation order allowing them, e. g. , to run a parallel schema.
Eventually, the traceback operation is applied to the scoring matrix to produce
the result (e. g. , this is often a path through the matrix). While the code pa-
rameters allow users to run any kind of sequence rating with the Alignment
HOC, a standard Smith & Waterman alignment [13] can be computed without

Code Transfer Tools for Grid Programming 231

writing any code parameter, since the Alignment HOC provides a default scor-
ing, alignment and traceback function for this purpose.

user-defined Code

DNA Sequences

HPC Hardware (RMI Communication)

si↪j := max(si↪j 1 + penalty↪

si 1↪j 1 + (i↪ j)↪
si 1↪j + penalty)

{ 1
+1

(i↪ j) :=
otherwise
if 1(i) = 2(j)

Scoring Function

Alignment Function Traceback Function

inside the
 Matrices

one Submatrix
per Server

HOC Code Parameters

Figure 3. Computation Schema of the Alignment HOC for DNA Similarity Detection

As shown in Fig. 3, the Alignment HOC is a distributed component which
uses RMI for dispatching parts of its input to multiple RMI servers (they are to
be launched by the user in advance). For our example application, we specified
a scoring and a traceback function that search for circular permutations [14].
While the default alignment function of the Alignment HOC allows for any
kind of data dependences (even among non-neighboring input elements) and
works sequentially, we implemented an alignment function that executes the
parallel processing schema known as the wavefront pattern [3]. It partitions the
matrix into submatrices which are positioned along the matrix antidiagonals
and form a wavefront. The submatrices are processed by the servers which
need no synchronization, since the wavefront pattern guarantees that there are
data dependences only inside the submatrices but not amongst them. While the
computations proceed through the matrix, there is a varying number of parallel
processes active, as shown in the processing schema in Fig. 2. The alignment
function is an example for code reuse (and, thus, reduced code transfer costs) in
the HOC-SA: it can be used as a code parameter in different applications (with
potentially different HOCs), even in applications of the wavefront pattern that
neither process genome data nor use RMI servers.

For implementing the sequential processing inside the code parameters, we
used the JAligner library [10]. As shown in Section 2.3, the HOC-SA provides
to each HOC a specific library code in a server-sided repository. The Alignment
HOC, e. g. , has access to JAligner, allowing us to use it without transferring it
to the servers ourselves.

The decision to choose one particular code transfer technology depends on
the relation between application-independent parts that can be handled by a
HOC and the size of the code parameters. An advantage of using HOC-SA,
is that it has a relatively small footprint, i. e. , can outsource tasks to remote

232

machines which do not run Globus containers of their own. If the target en-
vironment has the Globus container installed on every node per default, it is
always worth to consider using both WS-GRAM and HOC-SA. In the next
section, we compare the two technologies regarding their performance.

4. Performance Comparison: HOC-SA vs. WS-GRAM
In this section, we compare the performance of the HOC-SA implementation

as a Globus Incubator project [4] with WS-GRAM [2] from the Globus Toolkit.
We use two implementations of the genome similarity detection application

described in Sec. 3: one on top of HOC-SA and one on top of WS-GRAM. The
amount of operational code including the Alignment HOC is approximately
18K lines of code for both versions. The application-specific code, i. e. , the
part the user writes in the HOC-SA version is only 400 lines of code long. Since
the Alignment HOC is an application-independent component, it is typically
pre-installed in a server-side repository in the HOC-SA. Therefore, HOC-SA
reduces the network traffic at startup of our application by factor 45.

All our tests were generated and submitted by means of the DiPerF tool in
ServMark [1], a specialized tool for grid performance evaluation. HOC-SA
was installed on grid nodes at the University of Chicago, with the following
characteristics: Dual-Intel Xeon(TM) 3.0 GHz with Hyper-threading, 2.0 Gb
of Memory and 100Mb/s network connectivity. Clients were deployed on the
PlanetLab nodes [12], which are Linux PCs connected to the PlanetLab overlay
network with worldwide distribution. Most nodes are connected via 100 Mb/s
network links (some still have 10Mb/s links) over a wide-area network (WAN),
have processor speeds exceeding 1.0 GHz IA32 Pentium III processors, and at
least 512 MB RAM.

Our metrics used for quantifying the performance of the two implementations
are as follows: (1) execution time (response) is the average time elapsed from
job submission to finish; (2) throughput quantifies the number of computations
that terminated and returned a result (i. e. , completed requests) of the service
per second, and (3) load represents the number of clients that use the service
concurrently at a certain moment in time.

Figure 4 captures the performance WS-GRAM and HOC-SA in terms of
response time. In some of experiments, the performance of WS-GRAM was
up to two times higher than the performance of HOC-SA. We explain this
by the highly optimized processing of repeated requests in WS-GRAM (e. g. ,
via caching). On average, WS-GRAM showed lower variations for response
time; the spikes can be explained by the temporal incapacity of the service to
serve all requests, caused by the communication with the OGSA-DAI and the
RMI servers. The performance of HOC-SA improves when the Code service
and the RMI servers are placed in the same LAN and depends on the LAN

Code Transfer Tools for Grid Programming 233

 0

 20

 40

 60

 80

 100

 120

 140

 10 20 30 40 50 60

T
im

e
[s

ec
on

ds
]

Time Units [1 unit = 60 seconds]

GRAM
HOC−SA

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 50 100 150 200 250

T
im

e
[s

ec
on

ds
]

Time Units [1 unit = 60 seconds]

GRAM
HOC−SA

Figure 4. GRAM and HOC-SA response time in seconds on the dual Xenon processor with
40 (left) and 20 (right) clients running in PlanetLab for 1800 (left) or 3600 seconds (right)

capabilities [8]. Thus, the use of the HOC-SA Code service and Remote Code
Loader for code transfer comes at a certain cost when the resources are widely
dispersed.

However, we also measured that WS-GRAM, while delivering better re-
sponse times, caused a processor load that was on average 20% higher than in
the HOC-SA scenario. Thus, HOC-SA can provide a higher availability (in
terms of responsiveness), when the number of concurrent clients rises.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 10 20 30 40 50 60

T
hr

ou
gh

pu
t

Time Units [1 unit = 60 seconds]

GRAM
HOC−SA

 0

 1

 2

 3

 4

 5

 50 100 150 200 250

T
hr

ou
gh

pu
t

Time Units [1 unit = 60 seconds]

GRAM
HOC−SA

Figure 5. GRAM and HOC-SA throughput on the dual Xenon processor with at most 40 (left)
and 20 (right) clients running on PlanetLab. Tunable parameters: starts a new client every 30
(left) and 180 (right) seconds, each client runs for 1800 (left) and 3600 (right) seconds

Figure 5 shows that the performance of WS-GRAM in terms of throughput is
up to three times higher as in HOC-SA. This is explained by the use of gridFTP
instead of SOAP for transferring the sequence files in the WS-GRAM version.

234

5. Conclusions and Related Work
This paper has compared two approaches to grid application programming

– WS-GRAM and HOC-SA – with regard to how they handle code transfer
over the network and its execution on the grid nodes. For our experiments we
used a real-world application, which is successfully used in bioinformatics: this
program recently scanned the genome database ProDom [14] and found pattern
matches that were not known previously [8].

An important advantage of HOC-SA is that it frees the user from writing any
declarative code. The traditional declaration of communicated data and code
in grid applications becomes unnecessary due to pre-built components and a
special portal. HOC-SA also allows users to perform code transfer by accessing
the Code Service directly from within the application code. Other grid portal
projects, e. g. , Ganga [7] and gridPort [9], also support the transfer of code. But
these projects cannot be used for building new applications: their purpose is the
placement of existing applications onto grid nodes. Ganga and gridPort also do
not allow to submit to the grid application code that has data dependencies.

In our experiments, HOC-SA demonstrated an advantage of simplified ap-
plication programming and reduced network traffic. If an application performs
computations that are so time-consuming that they justify the costs for handling
every part of them with hand-tuned code, then WS-GRAM is probably the best
choice for implementing it. Since the time costs of most grid applications de-
pend on the amounts of data being processed, a HOC that provides a distributed
processing schema can help speeding up these applications by increasing the
number of execution nodes. Thus, HOC-SA proves to be a viable extension to
WS-GRAM in today’s grids. Grid applications can also benefit from both tech-
nologies, HOC-SA and WS-GRAM, simultaneously: WS-GRAM can transfer
a HOC together with its code parameters or any other self-contained part of a
HOC-SA application.

References
[1] C. Dumitrescu, A. Iosup, I. Raicu, M. Ripeanu. ServMark: A Distributed Grid Testing

Framework, 2006. http://dev.globus.org/wiki/Incubator/ServMark.

[2] K. Czajkowski, I. Foster, C. Kesselman et al.. A Resource Management Architecture for
Metacomputing Systems . In IPPS/PDP’98 Workshop, pages 62–82, 1998.

[3] J. Dünnweber et al. Adaptable parallel components for Grid programming. Integrated
Research in GRID Computing, pages 43–59. Springer Verlag, 2006.

[4] J. Dünnweber, P. Lüdeking, C. L. Dumitrescu, E. Argollo, and S. Gorlatch. The HOC-SA
Globus Incubator Project. Web page: http://dev.globus.org/incubator/hoc-sa/, 2006.

[5] I. Foster and C. Kesselman. Globus Toolkit Supercomputer Journal, 11(2):115–128,
1997.

[6] S. Gorlatch and J. Dünnweber. From Grid Middleware to Grid Applications: Bridging the
Gap with HOCs. In Future Generation Grids, pages 299–306. Springer Verlag, 2005.

Code Transfer Tools for Grid Programming 235

[7] K. Harrison et al. Ganga: a Grid User Interface for Distributed Analysis. In S. J. Cox,
editor, Proceedings of Fifth UK e-Science All-Hands Meeting. EPSRC, 2006.

[8] P. Luedeking. MS thesis: Proteine sequence analysis in the Grid with the HOC-SA, 2006.

[9] Maytal Dahan et al. Grid Portal Toolkit 3 (gridport). In Proceedings of the 13th HPDC,
pages 272–273, Washington, DC, USA, 2004. IEEE.

[10] A. Moustafa. The JAligner library http://jaligner.sourceforge.net, 2007

[11] Grid Data Access and Integration OGSA-DAI www.ogsadai.org.uk, 2007

[12] L. Peterson et al. A Blueprint for Introducing Disruptive Technology into the Internet. In
Proceedings of the ACM HotNets), October 2002.

[13] T. F. Smith and M. S. Waterman. Identification of common molecular subsequences.
Journal of Molecular Biology, 147:195–197, 1981.

[14] J. Weiner, G. Thomas, and E. Bornberg-Bauer. Rapid Motif-based Prediction of Circular
Permutations in Multi-domain Proteins. Bioinformatics, 21:932 – 937, 2005.

[15] W3C: . XML protocol recommendations, http://www.w3.org/2002/ws, 2002.

VII

WORKFLOW MANAGEMENT

TOWARDS A LIGHT-WEIGHT WORKFLOW
ENGINE IN THE ASKALON
GRID ENVIRONMENT

Jun Qin, Marek Wieczorek, Kassian Plankensteiner, Thomas Fahringer
Institute of Computer Science, University of Innsbruck
Technikerstraße 21a, A-6020 Innsbruck, Austria
{jerry,marek,kassian,tf}@dps.uibk.ac.at

Abstract Workflow scheduling and execution belong to the most difficult problems in the
Grid computing research area. Instead of using a full-ahead planning to schedule
workflows, which requires precise predictions of task execution time, file transfer
time and Grid site status during the workflow execution, we propose a light-
weight workflow engine for the ASKALON Grid environment, which uses just
in-time scheduling based on automatically generated performance predictions
and task prioritization. An extensive survey of the related work is discussed. The
architecture of the proposed workflow engine and some preliminary results are
presented.

Keywords: Grid Workflow, Enactment Engine, Scheduling, Performance

240

1. Introduction
Grid computing has become a major paradigm for parallel processing. Work-

flow scheduling and execution in a computational environment is a difficult op-
timization problem, which is NP-complete [6] in most of its variants. To make
a schedule effective and feasible is particularly challenging in case of Grid en-
vironments, which are usually large, highly dynamic and unreliable distributed
environments. The ASKALON Grid environment [4], which is the main Grid
application development and computing environment for the Austrian Grid in-
frastructure [1], uses full-ahead planning to schedule workflows in the Grid. It
applies rescheduling to make the workflow processing more dynamic, and uses
advance reservation to improve the predictability and feasibility of the schedul-
ing [15]. The full-ahead scheduling is proved to be a reasonable approach,
which shows an advantage over just in-time scheduling techniques, especially
for a certain class of highly unbalanced workflows [14]. However, in order
to benefit from a full-ahead scheduling approach, reliable predictions for task
execution time, data transfer time, and grid resource status during the whole
workflow execution are required. The experience we gained with executing
workflows in Austrian Grid [1] using ASKALON shows that these assump-
tions may not always be fulfilled, due to short execution times, highly unpre-
dictable overheads, and task failures. Based on these observations, the profit
coming from sophisticated and time consuming scheduling techniques seems
to be rather debatable, and a simpler but more dynamic workflow scheduling
and execution approach is required.

In this paper, we propose a light-weight workflow engine, tightly coupled
with a just in-time scheduler, which applies automatically generated perfor-
mance feedback and one-step-ahead workflow analysis to optimize workflow
executions in Grid environments.

2. Past Experience
In ASKALON, the scientific workflows are specified in the Abstract Grid

Workflow Language (AGWL) [5]. AGWL allows for a concise and expressive
representation of workflows, based on a set of control flow constructs includ-
ing basic constructs (sequence, parallel, dag), sequential and parallel loops
(while, dowhile, for, forEach, parallelFor, parallelForEach), as well
as conditional branches (if, switch). At the atomic level, AGWL workflows
consist of explicitly defined tasks and data transfers. Data transfers are defined
by means of data ports assigned to tasks and workflow constructs. Tasks in
workflows can be of different types, referred to as activity types. The activity
types are mapped to concrete activity implementations during workflow execu-
tion. Currently, we have one activity implementation associated with a given
activity type on a specific Grid site, which means that activities of an activity

Towards a Light-weight Workflow Engine in the ASKALON Grid Environment 241

type in most cases have the same execution time on a resource. The tasks are
executed on Grid sites, using Globus Toolkit and local resource managers like
OpenPBS. In the rest of the paper, the execution time of a task will describe
only the effective execution time of a task on a Grid site, and the environmental
overhead will describe the time needed by Globus Toolkit and the local resource
manager to start up the job. Due to the lack of enough experimental data, the
data transfer time and the related overhead have not been analyzed by us.

Since October 2006, we have executed 901 workflows of 15 different ap-
plications on the Austrian Grid using ASKALON. The workflows consisted of
46773 task executions, 752 of which failed. We based our study on the 34993
successfully finished tasks for which we had a full execution record stored in
the database.

50 100 150 200 250
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

Total number of cases:34993
Bin size:1

25th percentile:10.251
50th percentile (median):20.36

75th percentile:50.879
95th percentile:222.6147

Maximum measurement:2069.15

Task execution time

execution time [s]

nu
m

be
r

of
 c

as
es

 (
ta

sk
s)

(a) Execution time distribution

5 10 15 20 25 30 35 40
0

1000

2000

3000

4000

5000

6000
Total number of cases:34993

Bin size:1
25th percentile:1.3168

50th percentile (median):4.587
75th percentile:12.005

95th percentile:21.5393
Maximum measurement:1940.817

Task execution overhead

overhead time [s]

nu
m

be
r

of
 c

as
es

(b) Overhead time distribution

Figure 1. Execution and overhead time distribution

The histograms in Fig. 1 show the distribution of the execution time and
the overhead time among the executed tasks. The dashed vertical lines repre-
sent the 25th, the 50th, the 75th, and the 95th percentile, respectively. As we
can see, nearly all the execution times are concentrated around certain values
which represent typical execution times for different activity types on different
resources. The overhead time has a two-modal distribution, clearly because of
two predominant configurations of the Globus Toolkit on different sites.

Fig. 2 shows the ratio between the overhead time and the execution time
for different tasks. The overhead was equal in average to around 15% of the
effective execution time, however very often it was equal or even higher than the
effective execution time. The peaks around the arguments of 40%, 60%, and
100% represent the sets of tasks with very short execution time and relatively
high overhead.

The presented results show that most of the tasks executed in ASKALON
were rather short (shorter than 4 minutes, in most cases shorter than 1 minute).
The environmental overhead time, which was usually between 1 and 5 seconds
or between 10 and 20 seconds, in 50% of the cases was greater than 15% of
the effective execution time. When running workflows consisting of such short

242

0 20 40 60 80 100 120 140 160 180 200
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Total number of cases:34993
Bin size:1

25th percentile (median):6.3802
50th percentile (median):15.6387

75th percentile:53.0699
95th percentile:167.0811

Maximum measurement:2068250

Overhead time/execution time ratio

ratio value [%]

nu
m

be
r

of
 c

as
es

 (
ta

sk
s)

Figure 2. Overhead/execution time ratio

tasks, for which the overhead time may be relatively long in comparison with
the execution time, we may expect considerable high fluctuations of the task
execution which cannot be fully predicted in advance. As we showed in [14],
by applying a sophisticated full-ahead scheduling approach to fully balanced
workflows, we can achieve the execution time 20% shorter than in case of
a simple “myopic” just in-time scheduling. In ASKALON, this theoretical
value could be attainable for workflows consisting of relatively long tasks,
which are characterized by highly predictable execution time and relatively
short overheads. Since most of the tasks had rather short execution time, which
makes the less predictable overheads more significant, and since some other
factors like external load, file transfer overhead and task failure may also affect
long-range predictions, the benefits coming from a full-ahead scheduling could
become debatable. A light-weight just in-time scheduling strategy, which is
better than a simple “myopic” algorithm, could be a valuable supplement to the
full-ahead scheduling currently used in ASKALON.

3. Related Work
The problem of dynamic workflow scheduling has already been tackled many

times in different ways. Some authors proposed full-graph scheduling applied
in a dynamic way, by applying rescheduling. The approach proposed in [3] in-
troduces workflow partitioning, which consists in dividing a workflow into a
sequence of subworkflows. By introducing implicit barriers between arbitrar-
ily created subworkflows, the approach may in some cases provide inefficient
results. In ASKALON [4], an advanced model of scientific workflows is pro-
posed, which includes loops, parallel loops, and conditional branches. The
workflows are scheduled using HEFT, and a rescheduling is triggered when
some assumptions considering the workflow structure fail. This execution
model is extended in [17], where HEFT is applied dynamically during a work-
flow execution whenever the state of the Grid changes (the modified algorithm

Towards a Light-weight Workflow Engine in the ASKALON Grid Environment 243

is called AHEFT). However, this approach is only adapted for simple DAGs.
One of the algorithms proposed in [8] is also a dynamically applied full-graph
scheduling algorithm, used for simple parameter sweep applications. The dis-
advantage of full-graph scheduling approaches is that they have a computational
complexity of at least Θ(n · r) (where n and r are the number of tasks and re-
sources, respectively), which may introduce a significant scheduling overhead
if applied many times during a single workflow execution.

A hybrid static-dynamic scheduling approach is proposed in [12]. Work-
flows (master-slave applications) are scheduled either in a static way at the
beginning of execution, or in a dynamic way, during the execution. The static
and the dynamic scheduling are referred to as placement and replacement, and
are implemented using the algorithms called time-balancing and Guided Self-
Scheduling (GSS), respectively. The resources are classified according to their
load variance. Most of the jobs assigned to the resources with a low variance
are scheduled using the static placement, while the resources with a high vari-
ance are assigned mostly by the dynamic replacement. The predictions for the
execution time, the data transfer time and the resource availability are done by
the Network Weather Service [16].

Many dynamic workflow scheduling approaches are based on task prioriti-
zation. The second algorithm proposed in [8] gives higher priority to the tasks
whose children’s ancestors have already been finished. This approach has been
designed and examined for parameter sweep applications, and its usefulness
for a broader class of workflows has not been proved. The work presented in
[9] shows a survey of several dynamic list scheduling algorithms, and intro-
duces a novel algorithm called Fast Critical Path (FCP). The tasks in the queue
are sorted according to their positions on the critical path (the further from the
end of the workflow, the higher priority the task has). The priority queue has a
fixed size, and an additional unsorted queue is used to store the tasks which do
not fit in the priority queue. The approach was proposed for homogeneous en-
vironment, and no consideration about a reliable performance prediction model
has been made. The research proposed in [7] describes a model of multi-
ple workflow applications competing independently for distributed resources.
It optimizes the scheduling decisions using an extension of another priority-
based scheduling algorithm called DLS (Dynamic Level Scheduling). Since
there is no central execution engine which has control over the Grid resources,
the dynamic scheduling processes performed for different workflows are syn-
chronized by analyzing the lengths of the local queues.

Data transfer time was considered in several publications together with task
execution time as an optimization goal in Grid workflow scheduling. The
approach proposed in [2] is based on an initial partitioning of a workflow
into a sequence of subworkflows (levels), where all tasks within a level do not
depend on each other. The scheduling is done in a static way at the beginning

244

of execution, based on advance reservation of the resources. The approach
also assumes that exact predictions for data transfer and task execution time
are known in advance, in order to partition the workflow and to make a proper
scheduling. A dynamic scheduling approach has been proposed in [10]. The
scheduling is performed for independent jobs with data requirements, and task
and data scheduling are decoupled and performed by independent schedulers
called External Schedulers (ES) and Data Schedulers (DS). External Schedulers
perform schedule tasks and delegate them to Local Schedulers (LS), and Data
Schedulers decide upon possible data replications.

Unlike the aforementioned works, we propose a dynamic workflow schedul-
ing approach based on highly-adaptive performance predictions and combined
task execution and data transfer optimization. By making the scheduling just
in-time, we always consider the actual status of the Grid. And by applying a
critical path task prioritization technique, the total workflow execution time is
used as the main optimization goal. We do not make any special assumptions,
neither concerning stability of the environment, nor the precision of predictions.

4. Proposed Architecture
In the current architecture of ASKALON, the enactment engine, the sched-

uler, and the performance predictor are loosely coupled and communicate with
each other sparsely. A full-graph scheduling is applied, and rescheduling is
used as a way to make the execution more dynamic and adaptable to the vari-
able Grid environment. The architecture of the light-weight workflow engine
proposed in this paper is more tightly coupled, and the scheduling decisions
are made more dynamically, by postponing them as long as it still does not
bring any significant performance deterioration. The performance predictions
are based on the user experience, the dynamically generated feedback, and the
historical executions.

The proposed architecture is depicted in Fig. 3(a). It consists of 3 main
components: the executor, the scheduler and the performance predictor. The
executor is the main component responsible for processing and execution of
workflows submitted by the user. It executes workflow tasks based on the
decisions made by the scheduler, and also generates the feedback for the per-
formance predictor, which can be used to support the current or the future
executions of workflows. The scheduler schedules workflows by mapping the
tasks to available resources. The performance predictor supports the sched-
uler by providing it with predictions about the task execution time and the data
transfer time. The predictions are made based on the user experience defined
in the submitted workflow, as well as the feedback coming from the current
execution and the historical workflow executions.

Towards a Light-weight Workflow Engine in the ASKALON Grid Environment 245

(a) Proposed architecture

(b) State diagram

Figure 3. Proposed workflow engine

The state diagram describing the system is illustrated in Fig. 3(b). First, the
user submits a workflow and the executor starts to process the workflow by
selecting the tasks which are ready for execution (State 1). The executor then
updates the cached resource status information acquired from the resource man-
ager (State 2). The scheduler is invoked to schedule the tasks to the appropriate
resources (State 3). To do this, the scheduler considers the task availability on
different resources, and communicates with the performance predictor (State
4) to get the performance guidance supporting the scheduling decisions. The
scheduler tries to find the optimal mapping between the tasks and the available
resources. As soon as some tasks are mapped, the execution starts (State 5)
and the system enters the idle state. The tasks which are not scheduled because
of the lack of available resources remain in the input queues of the scheduler.
Multiple workflow tasks which do not depend on each other may be executed at
the same time. The system leaves the idle state once the status of task execution
or of the Grid environment changes. If a task is completed successfully, the

246

execution feedback is sent to the performance predictor and the workflow is
processed again to find the tasks which are ready for execution (State 1). Then,
a next scheduling cycle is invoked or the whole workflow execution is finished.
If a task execution fails, then the executor analyzes the workflow (State 1) and
decides whether to reschedule the task or to terminate the workflow execu-
tion with an error message. If the status of the Grid changes (some resources
disappear or appear), then the executor updates the cached resource status in-
formation (State 2) and invokes the scheduler (State 3) to schedule more tasks
onto the newly available resources, or to reschedule the failed tasks.

5. Challenges
The goal in developing a light-weight workflow engine of ASKALON is to

take advantage of all the strong points of the just in-time scheduling approach,
and to avoid its weaknesses. The performance prediction in the proposed model
is highly dynamic, based on the performance measurements made in the cur-
rent workflow execution. This allows for a satisfactory good estimation of the
expected task execution time, the data transfer time, and the environmental
overhead. In order to make the predictions possible even if the current mea-
surements are not ready yet, we introduce the two additional prediction sources:
user experiences and historical measurements. According to our experience,
the user is very often able to make quite precise estimations concerning the
relative execution times of individual tasks in a workflow. For instance in the
Invmod workflow [13], the tasks of all types (but one) have the execution time
on a resource equal to either t or 2t (where t may differ, depending on the input
data). The user can define such relative execution time in AGWL workflows
through AGWL properties [5]. The historical measurements come from the past
executions of the same workflow. These measurements may include absolute
values (e.g., “t = 300s”) as well as relative values (‘‘t(A) = 2.1 · t(B)”). To
make predictions for a given workflow, we will use only the performance data
generated during the execution of workflows with the same input data as the
given one. To this end, we compare the values on the corresponding AGWL
input ports of the workflows. If an input port is not numerical (e.g., it transmits
files), then we compare special numerical AGWL properties assigned by the
user to those ports.

At least two major problem may arise when applying a just in-time schedul-
ing. The first problem lies in the fact a just in-time decision which is optimal for
a part of a workflow may be unefficient from the point of view of the workflow
makespan (total execution time). This case has been studied in [14]. The sec-
ond problem is related to the in-advance data transfer optimization: postponing
the scheduling decisions until the last moment prevents the workflow engine
from transferring a data file f from a task A (the producer of f) to a task B

Towards a Light-weight Workflow Engine in the ASKALON Grid Environment 247

(the consumer of f), as long as it is not decided where the task B is scheduled
(i.e., an implicit barrier is introduced). This may have a major impact on the
execution time, as all of the workflow executed by us have large parallel tasks
producing data to be sent to a single task.

To deal with the first problem, we prioritize the tasks in the input queue of the
scheduler (see Fig. 3(a)). Similarly to the HEFT algorithm used in ASKALON
and to some other approaches [9, 7], we use the distance to the end of the
workflow as the prioritization criterion. The tasks with the higher distance
values are executed first, as the longer the distance is, the higher is the impact
of the task on the workflow makespan. The distance dist (W, τ) of a task
τ ∈ W to the end of workflow W is the maximal length of a path consisting
of tasks τ ′ ∈ W and data transfers dt ∈ W , which leads from the task τ to the
end of the workflow:

dist(W, τ) = maxp=path(τ,τend(W))(
∑

τ ′∈p

time(τ ′) +
∑

dt∈p

time(dt))

An estimated value of dist(W, τ) can be effectively computed based on the
performance predictions and the workflow structure analysis. If the workflow
contains loops and conditions, the estimation of dist(W, τ) may in some cases
become undeterministic (we may not know in advance how many iterations will
be executed and how the conditions will be evaluted). However, our experience
with workflow executions in ASKALON shows that parallel iterations usually
have balanced execution times, and the major part of the imbalance results from
the heterogeneity of the environment and from task failures.

To address the second of the aforementioned problems, we introduce a second
input queue of the scheduler, called advance queue (see Fig. 3(a)). All tasks
in the advance queue are immediate successors of the tasks in the main input
queue (i.e., they consume the data produced by the tasks in the main queue).
The scheduler makes advance scheduling of such tasks, if it decides that an
advance scheduling decision would bring a significant profit (for instance, if it
consumes data produced by at least 10 other tasks).

The executor and the scheduler communicate with each other via two input
queues and two output queues. The executor sends tasks to the main input
queue and receives the scheduling decisions from the main output queue. The
advance queues are used to support the advance scheduling. Description of the
tasks in the input queues contains the following information:

Task ID - unique task identifier,

Activity type - needed for resource matching and performance prediction,

Workflow ID - needed for performance prediction,

Distance to the end of workflow - needed for task prioritization,

248

Site name #CPUs CPU type

karwendel 8 DC AMD Opteron, 2.4 GHz
altix1 8 Itanium 2, 1.4 GHz

schafberg 8 Itanium 2, 1.4 GHz
c703-pc2201 8 Pentium 4, 2.8 GHz
c703-pc450 8 Pentium 4, 1.8 GHz

hydra 8 AMD Athlon, 1.67 GHz

Table 1. The Austrian Grid testbed

Immediate predecessors - needed for advance scheduling,

Task retry info - needed for proper rescheduling.

In certain situations, the proposed scheduling model can be extended by some
additional optimization techniques. For instance, the scheduler may preempt
some low-priority tasks to submit some higher-priority tasks, when it decides
that it would bring a benefit in terms of the workflow makespan. This feature
would only make sense if the workflow engine has control over the queue on
the local resource manager. In case when the number of available resources is
higher than the number of the tasks which can be run in parallel, the scheduler
may use multiple resources to replicate the execution of a single task, in order
to increase the probability of a successful and effective execution.

6. Experimental results
At the moment, we have implemented the executor and the performance

predictor based on relative execution time and historical execution time, which
allows us to test partially the functionality of the proposed approach. In the
experiments shown in this section, we will compare this approach (referred to
as proposed approach) with a similar approach not supporting any predictions
(no-prediction approach), and with a full-ahead scheduling approach using the
implemented performance predictor. The Grid workflow application used in
the experiments is MeteoAG [11], whose structure is illustrated in Fig. 4.

The comparison of the approaches with respect to the execution time and
the parallel speedup measured for different Grid configurations is illustrated in
Fig. 5. In the experiments, we ran the parallelForEach construct with two
parallel loop iterations, each of which had two parallelFor constructs with
48 parallel loop iterations. A subset of the computational resources which have
been used for the experiments is summarized in Table 1.

As illustrated in Fig. 5, the proposed approach provides a better performance
in comparison to the no-prediction approach. This advantage was achieved
through the performance predictions supporting the scheduling decisions. For
the maximal Grid size (6 sites), the workflow execution time was much longer
in the no-prediction approach (358 seconds) than in the proposed approach (271

Towards a Light-weight Workflow Engine in the ASKALON Grid Environment 249

Figure 4. MeteoAG workflow

seconds), as some large tasks were scheduled onto a slow Grid site hydra. The
proposed scheduling approach was also better than the full-ahead approach,
especially when the workflow was executed on 4 Grid sites and on 6 Grid
sites. This is because in the full-ahead scheduling approach, the scheduling
decision is made before the workflow execution starts, and there is no dynamic
rescheduling to adapt the changes of the external load of Grid sites.

 250

 300

 350

 400

 450

 500

 550

 600

 650

 700

 1 2 3 4 5 6

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

Number of Grid Sites

No-prediction approach
Full-ahead approach
Proposed approach

(a) Execution time

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 1 2 3 4 5 6

S
pe

ed
up

Number of Grid Sites

No-prediction approach
Full-ahead approach
Proposed approach

(b) Speedup

Figure 5. Experimental results of the MeteoAG workflow

250

7. Conclusions
We presented our experience with workflow execution on the Grid using

the ASKALON Grid environment, and showed the reasons why the current
full-ahead scheduling approach may be insufficient for many of the workflows
executed by us. We proposed a new workflow engine based on a just in-time
scheduling approach using automatically generated feedback and tasks prior-
itization, which is significantly different from the approaches introduced so
far in the related work. In the experiments performed in a real Grid environ-
ment, a first version of the new workflow engine, consisting of the executor and
the performance predictor, outperformed the approach based on the old full-
ahead scheduling, and a simple just in-time approach not based on performance
predictions. In the nearest future, we are planning to implement the whole
architecture proposed in the current work, and to examine its performance in a
real Grid environment.

Acknowledgements
This work is partially funded by the European Union through the IST-034601

edutain@grid and FP6-004265 CoreGRID projects.

References
[1] The Austrian Grid Project. http://www.austriangrid.at.
[2] A. H. Alhusaini, V. K. Prasanna, and C. S. Raghavendra. A Unified Resource Scheduling

Framework for Heterogeneous Computing Environments. In Heterogeneous Computing
Workshop, pages 156–165, 1999.

[3] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, S. Patil, M.-H. Su, K. Vahi, and
M. Livny. Pegasus: Mapping Scientific Workflows onto the Grid. In European Across
Grids Conference, pages 11–20, 2004.

[4] T. Fahringer, R. Prodan, R. Duan, F. Nerieri, S. Podlipnig, J. Qin, M. Siddiqui, H.-L.
Truong, A. Villazon, and M. Wieczorek. ASKALON: A Grid Application Development
and Computing Environment. In 6th International Workshop on Grid Computing (Grid
2005), Seattle, USA, November 2005. IEEE Computer Society Press.

[5] T. Fahringer, J. Qin, and S. Hainzer. Specification of Grid Workflow Applications with
AGWL: An Abstract Grid Workflow Language. In Proceedings of IEEE International
Symposium on Cluster Computing and the Grid 2005 (CCGrid 2005), Cardiff, UK, May
9-12, 2005. IEEE Computer Society Press.

[6] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman And Company, New York, 1979.

[7] M. Iverson and F. Ozguner. Dynamic, Competitive Scheduling of Multiple DAGs in a
Distributed Heterogeneous Environment. In HCW ’98: Proceedings of the Seventh Het-
erogeneous Computing Workshop, page 70, Washington, DC, USA, 1998. IEEE Computer
Society.

[8] T. Ma and R. Buyya. Critical-Path and Priority based Algorithms for Scheduling Work-
flows with Parameter Sweep Tasks on Global Grids. In Proceedings of the 17th Interna-
tional Symposium on Computer Architecture and High Performance Computing (SBAC-
PAD 2005), Rio de Janeiro, Brazil, Oct. 24-27 2005. IEEE Computer Society Press.

Towards a Light-weight Workflow Engine in the ASKALON Grid Environment 251

[9] A. Radulescu and A. J. C. van Gemund. On the complexity of list scheduling algorithms
for distributed-memory systems. In Proceeding of the ICS 1999, pages 68–75, 1999.

[10] K. Ranganathan and I. Foster. Decoupling Computation and Data Scheduling in Distrib-
uted Data-Intensive Applications.

[11] F. Schüller and J. Qin. Towards a Workflow Model for Meteorological Simulations on the
AustrianGrid. In 1st Austrian Grid Symposium, Schloss Hagenberg, Austria, December
01-02, 2005. OCG Verlag.

[12] N. T. Spring and R. Wolski. Application Level Scheduling of Gene Sequence Comparison
on Metacomputers. In International Conference on Supercomputing, pages 141–148,
1998.

[13] D. Theiner and M. Wieczorek. Reduction of Calibration Time of Distributed Hydrolog-
ical Models by Use of Grid Computing and Nonlinear Optimisation Algorithms. In 7th
International Conference on Hydroinformatics (HIC 2006), Nice, France, Sep. 2006.

[14] M. Wieczorek, R. Prodan, and T. Fahringer. Scheduling of Scientific Work-
flows in the ASKALON Grid Environment. ACM SIGMOD Record, 35(3), 2005.
http://dps.uibk.ac.at/ marek/publications/acm-sigmod-2005.pdf.

[15] M. Wieczorek, M. Siddiqui, A. Villazon, R. Prodan, and T. Fahringer. Applying Advance
Reservation to Increase Predictability of Workflow Execution on the Grid. e-science, 0:82,
2006.

[16] R. Wolski, N. T. Spring, and J. Hayes. The network weather service: a distributed resource
performance forecasting service for metacomputing. Future Generation Computer Sys-
tems, 15(5–6):757–768, 1999.

[17] Z. Yu and W. Shi. An Adaptive Rescheduling Strategy for Grid Workflow Applications.
In Proceedings of the 21st IPDPS 2007, Mar 26-30 2007. IEEE Computer Society Press.

SUPPORTING WORKFLOW-LEVEL
PARAMETER STUDY APPLICATIONS
BY THE P-GRADE GRID PORTAL∗

Peter Kacsuk and Zoltan Farkas and Gergely Sipos and Gabor Hermann
MTA SZTAKI, 1111 Kende utca 13
Budapest, Hungary
{kacsuk,zfarkas,sipos,gabor.hermann}@sztaki.hu

Tamas Kiss
University of Westminster
Cavendish School of Informatics
115 New Cavendish Street London W1W 6UW
T.Kiss@westminster.ac.uk

Abstract Workflow applications are frequently used in many production Grids. There is
a natural need to run the same workflow with many different parameter sets.
P-GRADE portal has been providing a high-level, graphical workflow develop-
ment and execution environment for various Grids (EGEE, UK NGS, GIN VO,
OSG, TeraGrid, etc.) built on second and third generation Grid technologies
(GT2, LCG-2, GT4, gLite). Feedback from the user communities of the portal
showed that parameter study support is highly needed and hence the recent release
(2.5) of the portal supports the workflow-level parameter study applications. The
current paper describes the semantics and implementation principles of manag-
ing and executing workflows as parameter studies. Special emphasis is on the
generation of the parameter input files, concurrent management of large number
of files and jobs as well as collecting the large number of results generated at the
PS execution time.

Keywords: Portal, Parameter Study, Workflow, Execution

∗This research work is carried out under the FP6 Network of Excellence CoreGRID funded by the Euro-
pean Commission (Contract IST-2002-004265) and under the SEE-GRID-2 project funded by the European
Commission (Contract number: 031775).

254

1. Introduction
One of the most promising utilizations of Grid resources comes to life with

parameter study (or “parameter sweep”) applications where the same applica-
tion should be executed with a large set of input parameters. Such parameter
study applications are easy to run in the Grid since executions started with differ-
ent parameters are completely independent. Indeed, there are several projects
[1],[2] that demonstrated that parameter study applications are easily manage-
able in the Grid. However, most of these projects tackled only single job based
applications. The real challenge comes when complex applications consisting
of large number of jobs connected into a workflow should be executed with
many different parameter sets. There have been only two projects that tried to
combine parameter studies with workflow-level support in the Grid. ILab [3],
[4] enables the user to create a special parameter study oriented workflow.
With the help of a sophisticated GUI, the user can explicitly define statically
how to distribute and replicate the parameter files in the Grid and how many
independent jobs are to be launched for each segment of the data files. The
SEGL [5] approach puts much more emphasis on exploring the dynamic nature
of the Grid. They also provide a GUI to define the workflows and to hide the
low level details of the underlying Grid. The SEGL workflow provides tools
for several levels of parameterization, repeated processing, handling conclu-
sions and branches during the processing as well as synchronization of parallel
branches and processes. The problem with this GUI is that it might be too
sophisticated, requiring very large skill from the application developer.

Although our approach to support workflow-level parameter study appli-
cations in the Grid has many similarities with these two projects, there are
significant differences, too. Our main goals are as follows:

1 Keep both the workflow GUI and the parameter study support concept as
simple as possible. This enables the fast learning and easy usage.

2 Enable run any existing workflow with different parameter sets without
modifying the structure of the workflow.

3 Provide an easy-to-use way of generating the various input parameter
files needed for the PS execution.

4 Manage the execution of the workflows on as many Grid resources as
possible. Enable the collection of Grid resources from several Grids.

5 Enable the access of the workflow-oriented GUI and the available Grids
via a Grid portal without installing any software on the user’s machine.

6 Provide an easy-to-use way of collecting and processing the large number
of result files generated during the PS execution.

Supporting Workflow-level PS Applications by the P-GRADE Grid portal 255

The starting point for our project was the previous version of P-GRADE Grid
portal[6]that provides a workflow-oriented GUI as well as workflow-level in-
teroperability between various Grids even if they are built on different Grid
technologies. This means that the same portal can be connected to several dif-
ferent Grids and the portal manages the workflow execution among these Grids
according to the users’ requirement [7]. The portal even enables the parallel
exploitation of the connected Grids, i.e., different jobs of the same workflow
can simultaneously be executed on Grid resources taken from different Grids.
Such a multi-Grid workflow execution mechanism is a unique feature of the
P-GRADE portal that is now widely used for many different Grids (e.g. SEE-
GRID, VOCE, HunGrid, GILDA, UK NGS, TeraGrid, GIN VO of OGF, etc.).

Experiences of the previous version of the portal revealed that many appli-
cations require not only the single execution of a workflow rather they seek for
parameter study support to execute an existing workflow with many different
parameter sets. Therefore, our motivation was to extend the existing single
workflow support of the portal towards a generic workflow-level parameter
study execution support. Such support should enable the automatic starting,
execution, monitoring and visualization of all the workflows belonging to the
same parameter study. Of course the same way as in the case of the single
workflow management environment the users should neither know any details
of the underlying Grids nor insist on any particular programming language.
Even legacy codes should be used as services in the workflows if the portal is
integrated with the GEMLCA legacy code architecture service[8].

In order to reach the six main goals mentioned above we have developed the
so-called “black-box” algorithm to manage workflow-level parameter studies
across multiple Grids. This algorithm requires only the modification of those
input ports that are used to feed the various input parameters for the workflow.
In order to generate input parameters we extended the portal with “Generator”
job types. Finally, in order to facilitate the collection and processing of result
files we introduced the concept of “Collector” job types. The paper describes
the semantics of the black-box algorithm, the Generator and the Collector.

In Section 2 the paper explains the “black-box” execution semantics and its
portal support both at the user interface and the portal workflow manager level.
Section 3 introduces the concept of Generator and Collector jobs as well as
their execution mechanism.

2. The “black-box” execution semantics of workflow-level
parameter study execution

The “black-box” execution semantics means that we consider a workflow as
a black box that should be executed with many different parameter sets. These
parameter sets are placed on the so-called PS input ports of the workflow. An

256

input port is called PS input port if a set of parameter files can be received on
that port. If a workflow has one such PS input port, it should be executed as
many times as many elements are in the parameter file set of that port. If there
are several PS input ports, the workflow should be executed according to the
cross-product of these input sets as shown in Figure 1. From now on we say
that a workflow (WF) which has got at least one PS input port is called a PS
workflow (PS-WF).

In order to manage the execution of workflows according to the “black-
box” execution semantics the workflow manager of the portal was extended
in the following way. Let M = N1xN2x . . . xNm, where m is the number
of PS input ports and Ni denotes the number of input files on the i-th PS
input port. At run-time the portal PS-WF manager generates M executable
workflows (e-WFs) from the original PS-WF. Every e-WF is labeled by m
labels: 1 − n1, 2 − n2, . . .m − nm ,where the internal structure of labeli is:
i − ni ,where i identifies the i-th input PS port and ni represents the ordering
number of the input file taken from the i-th PS port in the identified execution
instance: 0 ≤ ni < Ni.

This labeling scheme identifies for the PS-WF manager which input file to
take from the different PS input ports in the case of different execution in-
stances (e-WFs). It also helps in identifying the output files generated at the
output ports. Every output file is labeled with the label of the e-WF that gen-
erated it. Notice that output files can be local and remote. Remote output
files are always permanent and once they are produced by an e-WF they can
be immediately read by the user. This enables the user to study the partial
results even if an e-WF is not completed. Local output files can be permanent
or volatile. Permanent means that the user would like to get access to this
output file only when the whole e-WF execution has been completed. These
partial results are collected and stored by the portal meanwhile the e-WF runs.
When the e-WF is completed these files are zipped (together with the standard
output and error logs) and placed by the portal to a Grid storage resource that
was defined by the user. These local permanent files should be typically small
files and collecting and storing them by the portal the number of access to Grid
storage resources can be significantly reduced resulting in the reduction of the
overall execution time. Finally, local volatile files represent temporary partial
results. As they are consumed by the connected job(s) they can be removed
from the portal. This is important from the point of view of reducing the load
of the portal storage resources. Developing and running PS-WF applications
according to the “black-box” execution semantics require three main steps. The
first step is the development of the WF application that the user would like to
run as a PS-WF application. The development process of a WF application
has been described in previous publications[6]as well as in the User’s Man-
ual [9] of the portal release 2.4.1 and hence we do not describe it in this paper.

Supporting Workflow-level PS Applications by the P-GRADE Grid portal 257

Figure 1. Concept of “black-box” execution semantics

The second step is the transformation of the WF into a PS-WF. Finally, the
third step includes the submission of the PS-WF application to the Grid and
monitoring the execution of the PS-WF application. Consequently, the PS-WF
user interface has two major parts:
1. Definition of PS-WF graphs
2. Monitoring the PS-WF graph execution

2.1 PS-WF graph definition
In order to turn a WF application into a PS-WF application the graphical

Workflow Editor (WE) of the portal was slightly extended. The user can open
the existing WF by the WE and can turn any of the existing input port into a PS
input port.

In order to illustrate the process we use the Ax EQUAL B workflow appli-
cation depicted in Figure 2. The figure shows a simple example workflow that
is used for solving the Ax = B equation where A is a matrix, B and X are
vectors. The application consists of 5 jobs (all of them having sequential exe-
cutable code). The first job called as “Separator” accepts the A and B matrices
as input parameters on its input port, separates them and then copies A to jobs
“Invert A” and “A mul X”, and copies B to “Multip B” and “Subtr-B”. The job
“Invert A” creates the invert matrix of A that is multiplied by B in job “Mul-
tip B”. The output of “Multip B” is the searched X vector. The next two jobs
are used to check the quality of the result. If we want to execute this workflow
as a PS application the task is to modify this WF in order to solve the equation
for a set of A and B parameters. Figure 3 shows how to turn the input port of

258

Figure 2. Workflow for Computing the Ax = B equation

Figure 3. Definition of a PS input port

the Separator job into a PS port. Notice the difference between the input port
and PS input port definition. In case of a normal input port a file is associated
with the port. This file can be either local (originating from the user’s machine
and part of the input sandbox) or remote (placed in a storage resource of the
Grid). In case of a PS port (Figure 3) a directory is associated with the port.
This directory always should be placed in a storage resource of the Grid. The
user should place the series of input files into this directory that must not contain
any other file. After defining the PS input ports the user should identify the Grid
and its storage resource where the local permanent files should be stored at the
end of each e-WF execution. As a summary we can say that turning an existing
WF into a PS-WF is an extremely easy task. Simply turn some of the input
ports to PS input ports and define the target Grid storage resource for the local
permanent files. This was exactly our aim: to simplify for the user the process
of utilizing existing workflows and run them as parameter studies.

Supporting Workflow-level PS Applications by the P-GRADE Grid portal 259

2.2 Monitoring the PS-WF graph execution
Even monitoring a single job is important for the user not mentioning when

he runs thousands of jobs as part of a PS-WF execution. The challenge here
is how to visualize the execution status of thousands of e-WFs and jobs in an
easily understandable and manageable way. The ordinary WFs of a user are
listed by the portal under the Workflow Manager window. Here the user can
submit the WF, attach the WF to the Workflow Editor to see the graphical view
of the WF, and delete the WF. Moreover, the “Details” button enables the user
to see the details of the WF, i.e., to see the component jobs and their assignment
to Grid resources. The PS-WFs are listed in the Workflow Manager window in
the same way as the WFs. The only difference is that the PS-WFs have a “PS
Details” button to show their internal details.

Once the user submits the PS-WF, the portal workflow manager (WM) creates
all the e-WFs that are defined by the cross-product of the PS input ports’ file
sets. Then WM submits simultaneously as many e-WFs as many are permitted
by the portal administrator. After the PS-WF submission the user can see
the statistics of the e-WFs: how many were initiated, submitted, finished and
how many went on Rescue or Error. Figure 4 shows the situation where the
“Ax EQUAL B PS” PS-WF was submitted with 6 input parameter sets. As
a result 6 e-WFs were generated by the portal. 2 of them already finished, 3
submitted and one still in init state, i.e. waiting for submission. The figure also
shows that any submitted e-WF can be viewed in detail by using the “Details”
button. Clicking there the detailed view of the e-WF shows the component
jobs of the e-WF, their Grid resource assignment and their status. Notice that
any e-WF can be aborted at any time. It kills the selected e-WF but the other
e-WFs can continue their activity. Figure 5 also reveals that those e-WFs that
are finished cannot be viewed in the PS Workflow Details window. Their results
(including every stdout and stderr files) are already stored in the defined Grid
storage resource so the user can check those files there.

3. Generators and Collectors
As seen in Section 2 turning an existing WF into a PS-WF is extremely easy

from the user’s point of view. However, generating the input parameter files and
processing the result files still would be a tedious and time consuming job for the
user if the portal was not able to support even these activities. Recognizing the
importance of these activities in managing PS-WF applications, we introduced
two new job types in the PS-WF concept of the portal.
Generator (denoted as GEN in the PS-WF): Its task is to generate the necessary
input parameter files and place them in the selected storage elements in the same
form as the PS-WF concept requires it. The executable code of a Generator
should be written by the user and it will be executed as the executable of an

260

Figure 4. Detailed monitoring view of a PS-WF’s execution

ordinary job at any grid site. The only difference is that the output port of the
Generator should be defined and handled as a PS output port. The PS output port
of a Generator should be always connected to the PS input port of a PS-WF job.
The Generator job has a special version called as Automatic Generator (denoted
as A-GEN in the PS-WF). The executable code of A GEN is provided by the
portal and runs on the portal server. The user must give only those parameters
based on which A-GEN can generate the input parameter files. For example,
A GEN can generate integer input parameters in the range from a certain lower
limit to a certain upper limit and the task of the user is only to give the value of
the lower limit, upper limit and the increment. Details of the A-GEN support
can be found in the portal User’s Manual.
Collector (denoted as COLL in the PS-WF): Its task is to collect and process
the output files created at PS execution time at any output port of the PS-WF
provided that this output port generates remote output files (i.e. files that are
stored in grid storage elements). The executable code of a Collector should
be written by the user and it will be executed as the executable of an ordinary
job at any grid site. The only difference is that the input port of the Collector
should be defined and handled as a special input port. Figure 5 shows how the
Generator and Collector jobs can be connected to a PS-WF. Notice that several
Generators and Collectors can be connected to the same PS-WF. We call the
new workflow as the Extended PS-WF (E-PS-WF) that consists of three main
parts:
1. Generator part: containing the Generator jobs
2. PS-WF part: containing the original PS-WF
3. Collector part: containing the Collector jobs
The execution of the three parts is separated in time. First, the Generator part
is executed. In this first phase each Generator job is executed once and they
can be executed in parallel. When all Generator jobs are successfully finished,

Supporting Workflow-level PS Applications by the P-GRADE Grid portal 261

Figure 5. Structure of an E-PS-WF

the portal starts the second phase in which the e-workflows generated from
the PS-WF are executed (again in parallel as described in Section 2). When
all the e-workflows are either finished or aborted the portal starts the third
phase of E-PS-WF execution. In the third phase all Collector jobs are executed
simultaneously. All these phases are monitored and visualized for the user in a
similar way as shown in a Figure 4.

4. Conclusions
The workflow concept of P-GRADE portal was very successful and popular

among Grid users because its simplicity and expressiveness. Developing and
monitoring Grid applications based on the workflow concept of the portal is
extremely easy. Due to these advantages it was asked to set up for many
different Grids (OGF GIN VO, EGRID, SwissGrid, Turkish Grid, BalticGrid,
BioInfoGrid, CroGrid, Bulgarian Grid, Macedon Grid, etc.) meanwhile it runs
as official portal of several Grids (SEE-GRID, HunGrid, VOCE) and serves
other Grids as volunteer service (UK NGS, GILDA, etc.). The feedback from
the users made it clear that they want a parameter study support at the workflow
level but in a way that keeps the simplicity and expressiveness of the original
workflow concept. Based on their request we have extended the portal with
the workflow-level parameter study support. The new version of the portal has
been prototyped and was publicly demonstrated at the EGEE conference in
September 2006. The new version of the portal (version 2.5) that gives service
quality full support for the workflow-level parameter study was released in
February 2007 and now serves the following Grids: SEE-GRID, HunGrid,
VOCE, OSG, GILDA.

262

As seen in Section 2 turning an existing WF into a PS-WF is extremely easy
from the user’s point of view but required a significant extension of the WF
manager of the portal in order to handle the large number of jobs and workflows
in parallel. Furthermore, the monitoring and visualization capabilities of the
portal have also been extended and they enable the simultaneous surveillance of
large number of running workflows and jobs. In order to facilitate the creation of
the necessary input parameter file sets Generator jobs have been introduced into
the portal. The new Collector jobs support the easy collection and processing
of the output files produced by the different e-workflows at run time.

The black-box algorithm applied by the PS workflow manager gives an
optimal solution concerning the utilization of storage resources but generates
redundant job execution in case of certain workflows. We pursue research in
order to avoid such redundant job execution. The current execution method of
PS-WFs enables the static distribution of nodes between different Grids and
different Grid resources if brokers are not available in the connected Grids. If
brokers are available Grid resources can be assigned dynamically but the Grid
assignment is still static. To provide a fully dynamic allocation of Grids and
Grid resources a meta-broker should be developed and connected to the portal
and to the Grids. The development of such a broker is subject of further research
in the framework of the EU CoreGrid project[10].

References
[1] Casanova, H., Obertelli, G., Berman, F. and Wolski, R., The AppLeS Parameter Sweep

Template: User-Level Middleware for the Grid, Proceedings of the Super Computing (SC
2002) Conference, Dallas / USA, 2002.

[2] Abramson, D., Giddy, J., and Kotler, L., High Performance Parametric Modeling with
Nimrod/G: Killer Application for the Global Grid?, IPDPS’2000, Mexico, IEEE CS Press,
USA, 2000.

[3] Yarrow, M., McCann, K. M., Tejnil, E., and deVivo, A., Production-Level Distributed
Parametric Study Capabilities for the Grid, Grid Computing - GRID 2001 Workshop
Proceedings, Denver, CO, November 2001.

[4] McCann, K. M., Yarrow, M., deVivo, A. and Mehrotra P., ScyFlow: An Environment for
the Visual Specification and Execution of Scientific Workflows, GGF10 Workshop on
Workflow in Grid Systems, Berlin, 2004.

[5] N. Currle-Linde, F. Boes, P. Lindner, J. Pleiss and M.M. Resch, A Management System
for Complex Parameter Studies and Experiments in Grid Computing, in: Proc. of the 16th
IASTED Intl. Conf. on PDCS (ed.: T. Gonzales), Acta Press, 2004.

[6] P. Kacsuk and G. Sipos, Multi-Grid, Multi-User Workflows in the P-GRADE Grid Portal,
Journal of Grid Computing, Vol. 3, No. 3-4, pp. 221-238, 2005.

[7] P. Kacsuk, T. Kiss and G. Sipos, Solving the Grid Interoperability Problem by P-GRADE
Portal at Workflow Level, Proc. of the Grid-Enabling Legacy Applications and Supporting
End User Workshop, in conjunction with HPDC’06, Paris, pp. 3-7, 2005.

[8] T. Delaitre, et al., GEMLCA: Running Legacy Code Applications as Grid Services, Journal
of Grid Computing, Vol. 3, No. 1-2, pp. 75-90, 2005

Supporting Workflow-level PS Applications by the P-GRADE Grid portal 263

[9] http://www.lpds.sztaki.hu/pgportal/v23/manual/users manual/
UsersManualReleaseV2.html

[10] A. Kertesz and P. Kacsuk, Grid Meta-Broker Architecture: Towards an Interoperable Grid
Resource Brokering Service, CoreGRID Workshop on Grid Middleware in Conjunction
with EuroPar’06, Dresden, 2006.

APPLYING PATTERNS FOR PORTING COMPLEX
WORKFLOWS ONTO THE GRID∗

Alex Villazón, Malik Junaid, Mumtaz Siddiqui, and Thomas Fahringer
Institute of Computer Science, University of Innsbruck
Technikerstraße 21A/2, A-6020 Innsbruck, Austria
{avt|malik|mumtaz|tf}dps.uibk.ac.at

Abstract The Grid is becoming a mature infrastructure for running complex scientific
applications, not limited to one single domain. Recently, an increasing interest
to port applications to the Grid (legacy or not) has emerged in different scientific
communities, and several higher level portals and tools have been developed.
Unfortunately, very little attention has been given to the manner in which an
application should be re-designed or modified to be executed on the Grid. Based
on our experience, we propose a set of patterns for porting applications onto
the grid, which collect typical problems or design decisions to be done during
the “gridification” of applications. We present some results obtained by the
application of these patterns to real-word applications that were ported onto the
Grid.

Keywords: Grid, Workflow, Pattern, Attraction Pattern, Pipe-line pattern, gLite, Ganga,
Wien2k, Askalon, Pattern-oriented, Activity, Porting, Gridification, Pull model,
Push model, Sandbox, Storage Element

∗This work is partially funded by the EU through the FP6-031688 EGEE II and FP6-004265 CoreGRID
projects.

266

1. Introduction
The Grid infrastructure is evolving rapidly and becoming mature. Several

Grid middlewares such as Globus [8], gLite [6], and Unicore [7] have been
deployed at a very large scale worldwide. In addition, increasing number of
scientific communities have shown their interest to use the Grid for their applica-
tions. To help this porting, tools and higher level Grid portals and environments
of great help are proposed such as P-grade [12] and the ASKALON [5]. But
there is a lack of guidelines to help a developer to design the application for
porting it onto the Grid. In addition, Grid environments have their own features
which imposes deep modification on the original application, so that it can be
successfully executed. This effort is repeatedly needed for porting the same
application to another infrastructure.

As pattern-oriented software [3] are based on object-oriented paradigm, sci-
entific application programmer cannot easily apply them directly to their code,
which is mostly based on conventional legacy procedural approach. Some
other design patterns for parallel programming have been proposed [10], but
they mostly concern the implementation of application code and ignore complex
data dependencies, as is the case when running applications on the Grid.

We propose to apply patterns at another level, i.e. not to modify the appli-
cation code itself, but to apply them during the adaptation of the application
to be run on the Grid. In this context, we can identify a new kind of (Grid)
application developers, who has the responsibility of redesigning the applica-
tion for the Grid. This includes, structural analysis of the original application
(often represented as a workflow), identification of components suitable for
Grid based execution, selection of code distribution schema to handle control
and data dependencies, and the implementation of code for the Grid (including
scripts to wrap legacy code and to handle data management). This new kind of
developer is not an expert on the application to be ported, but has strong Grid
skills, and therefore can apply some patterns for the gridification.

In this paper we propose patterns to port and execute workflow applications
onto the Grid. We show how these patterns are applied to real world applications
ported on Grid environments based on Globus and gLite middlewares. We
present experiment results to demonstrate and compare various approaches.

The rest of the paper is organized as follows: Section 2 discusses about
execution models followed by the Section 3 which describes data management
models followed by the Section 4 that describes execution patterns for porting
workflows onto the Grid. In Section 5 we discuss our findings. Related work
is described in Section 6. Finally we conclude the paper in Section 7.

Applying Patterns for Porting Complex Workflows onto the Grid 267

2. Execution models
Since there are several possible ways of executing applications on the Grid,

an important step is to identify the execution model being used for the porting.
Even though the basic form of Grid activity is a job submission, the execution
model can vary, depending on how this activity is extended.

Notice that we differentiate between an application activity which is the
executable of the original application to be ported, and a Grid activity, which
is the activity that is executed on the Grid. A Grid activity can be mapped one-
to-one to an application activity, but in general it is a completely new activity,
which can have additional code to wrap the application activity and perform
other tasks, e.g. environment setting, data management, and execution control.

In general, the execution is controlled by a process that triggers the jobs and
coordinates the execution of the different activities. This execution enactor
often works together with a scheduler process which finds the adequate Grid
resources. In this model, the execution of several jobs in parallel is triggered
and controlled by the enactor, which is as a direct application of the master/slave
or star pattern.

The star pattern can be extended, so that a single Grid activity can also
control the execution of several other parallel executables. This model aims
at delegating part of the control of the execution. Such a model can be seen
as a distributed enactor. This model can be applied only if there is no data
dependency between the sub activities controlled by the sub enactor.

Following the notion of delegation, rather than submitting a job containing
the actual executable, an “execution agent” could be submitted. The execution
agent will be somehow a mini execution enactor, but only to use local resources,
in contrast of the delegated star that submits jobs on other Grid sites. The actual
jobs descriptions are put on a intermediate repository. The execution agents pull
the jobs for the actual execution. This allows execution optimization, because
one job is not bound to the execution of a single activity. This model however
is not well suited for applications with activities having high execution time
and complex data dependencies, because the execution agent does not have a
global vision of the structure of the application.

Figure 1 shows the three different execution models related to the central star
pattern, delegated star pattern, and delegated agent execution.

3. Data management models
There are several data management models possible, depending on the size

of the files, locality of the data, and also related to the execution models. If we
consider that an activity that runs on the Grid is co-located with the execution
enactor, there are two ways to move the data to the node where the activity is
executed. This depends on the size of the data: If the data is small (typically

268

Grid Activity

Grid Activity

Execution
Agents

Job Queue

Execution agent model

Enactor

Star pattern

Enactor

Grid Activity
Delegated

Extended (delegated) star pattern

Star pattern Wrapper

Figure 1. Different execution models on the Grid.

few MBytes), the data can be transferred together with the Grid activity using
staging mechanism available in most of the Grid middleware (e.g. in Globus
through the GASS service or the sandbox mechanism used in gLite).

The second case addresses much bigger data (hundreds of MBytes or GBytes)
and that is in the same location of the execution enactor or close to the user. In
this case, it is necessary to perform a data transfer explicitly to the Grid node,
where the activity will be executed. Here we can distinguish push or pull model.

The pull model is applied by performing the data transfer before the job
execution. This implies prior knowledge of the execution site. Such a model
is well adapted to Grid systems, where the Grid application developer can have
control on the scheduling and resource brokerage (i.e. the developer can select
where to run the application). With this model, the Grid activity related to the
execution of the task, and the data transfers are logically decoupled. The Grid
activity only knows that the data will be available beforehand.

The push model is applied by integrating the file transfer directly in the
Grid activity. The data is required to be available on a location from where the
Grid activity can access it. Therefore, an additional intermediate data transfer
is necessary (on the client side) to transfer the required data from its current
location, to a given data storage location. The Grid activity then pulls the data
directly to the node before the execution starts. This model couples the file
transfer and the activity. Due to the intermediate data transfer (which follows
push model), this approach requires to coordinate the execution of the data
transfers and the job submission, so that when the job is executed, the data is
available. In this case, the final data location needs to be known before job
submission. For retrieval of output data similar approaches as were used for
input data can be applied. Figure 2 shows the three mentioned data transfer
models.

4. Applying patterns for porting application
Let’s consider a very simple application based on a simple sequence of ac-

tivities, where the control-flow is equal to data-flow. The most natural design

Applying Patterns for Porting Complex Workflows onto the Grid 269

Push Pull

Activity

Data Transfer
Activity

Grid Activity

Data

Figure 2. Different data management models on the Grid.

patterns to apply will be the pipe-line pattern, as defined in the context of pat-
terns for parallel programming [10]. However, job execution on the Grid, has
a new parameter to be considered: the Grid overhead which comprises differ-
ent elements such as job submission, queuing time, security, file staging, data
transfer, among others (see [11] for a detailed discussion on Grid workflow
overhead). Thus, applying the pipe-line pattern could lead to performance loss
(i.e. the application run on the Grid, could be slower than the application run
on a single computer sequentially), if we ignore this new parameter.

In addition, if we apply the pattern by making a one-to-one mapping between
an application activity, and a Grid activity, without considering application
related information, it may happen that the execution of the application activity
takes only some seconds. In such a case, submitting a job on the Grid to execute
it, will be a clear bottleneck.

There are two reasons to this common error made during the porting. The
first one, is that often the Grid application developer asks for a description of
the original application to the developer or scientist. The resulting description
(often made using textual or ad-hoc graphical representation) only shows the
main application components and data dependencies, without including any
information about the approximate execution time of the different executables
described in the workflow. The second one, is that the Grid application devel-
oper creates a Grid workflow by mapping each application executable to a Grid
job. To overcome this problem, we propose the following basic pattern that we
call the attraction pattern.

4.1 The Attraction pattern
Let’s once again consider our simple sequential workflow, as described by

the application developer. This time we ask him to include performance infor-
mation (i.e. approximate execution time of the executable depending on the
input values). Performance related information, is something known by the
scientist based on his experience, and that the Grid developer must consider it
in order to adapt the application to the Grid.

The attraction pattern follows the idea of planet attraction, i.e. bigger planets
attract smaller ones. Here we consider the work (i.e. the approximated exe-
cution time/transactions) to represent the diameter of a planet (i.e. the activ-
ity). Thus, new Grid activities will be the combination of several application

270

activities. For this, the Grid developer will have to implement new wrapper
scripts, resulting in a reshaped workflow.

One additional question is related to the data management. As seen earlier,
we have different data management models. If the data to transmit is big,
we consider the data management activities as new planets which have to be
merged to form new Grid activities (using push or pull approach). In case of
small amount of data, we consider them as satellites, i.e. data management
activities “follow” the Grid activity. This is the case represented by the file
staging mechanism.

Lets now see an example of the application of the attraction pattern, when
we have the information about execution time and file transfer.

Figure 3(a) shows the original workflow given by the application developer.
Here we consider that the information about the execution time and size of data
produced by the activities represent two different applications, If no pattern
is applied, each activity in the workflow is simply mapped to a Grid activity,
which will introduce performance loss. In this particular example, several of
the application activities may only run for seconds and others for minutes or
hours.

By applying the attraction pattern, we can see that the new Grid activities
differ depending on the additional information about data and performance and
the application of the different execution and data management models.

Figure 3(b) (left) shows how the Grid activities are designed using the addi-
tional information (Case 1). In such a case, activity B is attracted by activity A,
resulting in a new Grid activity G1-1. Because of the size of the input data for
activity A, it is necessary to apply the pull model, where the data needs to be
stored on an external storage. The activity A inside G1-1 should perform the
pull of the data for execution. Since A and B run on the same location, there is
no need to transfer any data. Notice also that the output data form activity A
(file Y) is of small size, and therefore can be transferred to the new Grid activity
G1-2 (which wraps activity C), directly through staging mechanism.

Figure 3(b) (right) shows the application of the attraction pattern, this time
using the additional information (Case 2). Now we can see that Grid activity
G2-2 is the merging of activities B and C. The input file to Grid activity G2-2
is done using staging mechanism only.

We can see that even if the structure of the application remains very similar,
the actual implementation of the Grid activities is optimized for the execution
of the application based on the execution time and data information. This will
have an impact on the execution performance on the Grid, compared to the
naive approach based on one-to-one mapping of activities to Grid activities, as
will be shown in the next section.

Applying Patterns for Porting Complex Workflows onto the Grid 271

(a) Original workflow (b) Attraction pattern for different applications

Figure 3.

5. Experiments
Our experiments are based on porting a real application called Wien2k [2],

which has a complex workflow including loops, computing intensive activities
as well as computing non-intensive and complex data dependencies.

The idea was to start a complete new porting of the application to gLite
[6] middleware and to compare the effort to the prior porting of the same appli-
cation to the Austrian Grid using ASKALON system [5]. This porting was to
be done only based on the description provided by the application developer.
The team that worked on ASKALON didn’t communicate any details or know-
how about the first porting to the other one. After the successful porting, we
figured out that the same design decisions, mistakes and re-design were done
by both teams, and application of the patterns presented here would have been
of great help.

Figure 4(a) shows the original application description provided by the Wien2k
developers. After analysis, a new workflow description was made which is more
suitable for execution on the Grid (see 4(b)). This workflow was then used to
implement the Grid activities. Figure 4(c) shows the one-to-one mapping of the
workflow to Grid activities (naive workflow) and also the resulting workflow
when applying the attraction pattern.

We conducted experiments using a simulated Grid environment and a real
gLite based Grid testbed. In the first case, the activities were executed on inde-
pendent locations in the cluster and data was transferred to a central repository
before and after an activity executes.

We implemented the Grid application using Ganga [1], which is a program-
ming environment for Grids based on python. The Grid activities were done

272

using shell scripts and using commands to perform data management such as
sandbox or using an external storage element. Figure 5(a) shows a comparison
of the execution on the local system, the local backend, and on a real Grid
testbed. One can notice the important Grid overhead, even if all the nodes used
for the experiments were reserved for the execution.

When applying the naive approach, we measured the data management over-
head based on staging, i.e. we measured the overhead introduced by the sandbox
mechanism applied independently of the file sizes.

(a) Original application workflow provided by application developers

(b) Translated Workflow for
Grid

(c) Naive Grid workflow vs Attraction Pattern based
Workflow

Figure 4.

Finally, we applied the attraction pattern to the workflow using the infor-
mation about the approximated execution time of the activities and size of the
data. This information was provided by the Wien2k developers. We have run
this new workflow on the gLite testbed under the same conditions as for the
naive workflow. The execution time of the full workflow execution of both

Applying Patterns for Porting Complex Workflows onto the Grid 273

approaches is shown in Figure 5(b). In this figure, we only report the execution
time of the full workflow without the Grid overhead for the sake of simplicity.
We can see up to 50% of performance gain, which is due to the optimization
made to the structure of the workflow when applying the pattern, and also to
the selection of the most adapted data transfer model. This experiment depicts
that applying such a pattern for application porting to the Grid can improve
performance by design. The Grid activities that we implemented can be later
on ported to more sophisticated Grid environments such as ASKALON or P-
Grade. These systems will then be able to optimize even more the execution of
the workflow by applying techniques as described in [4], making our approach
a good complement to improve the performance of applications on the Grid.

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

 4096

 8192

 0 5 10 15 20 25

T
im

e
(s

ec
)

K-Points

Simulated Grid
Ganga Local

gLite Environment

(a) Execution of the workflow

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

 150

 0 5 10 15 20 25

T
im

e
(s

ec
)

K-Points

Naive
Attraction

(b) Execution of naive vs attraction pattern workflow

Figure 5. Peformance comparison

6. Related work
Some efforts have been done to identify workflow patterns that addresses data

and computational aspects of a workflow. An initiative to provide a conceptual
basis of workflow patterns is described in [15, 14, 16]. A classification frame-
work for exception handling in process-aware information systems based on
patterns is described in [13]. A collection of patterns for parallel programming
are described in [10]. All these patterns can be helpful for implementing Grid
application, but focus more in the implementation or redesigning of applications
to take into account parallelism or distribution. In our approach, we consider
a different type of developer, which is the Grid application developer. And the
pattern that we propose, takes into account execution and data management
models that are specific to Grid computing.

The work in [9] proposes three design patterns to implement Grid Services:
Grid Abstract Factory, Template and Interface patterns. This work focus on im-
plementation of Grid services in the context of a Service Oriented Architecture,
and not on the porting of existing applications on the Grid.

274

In [4] the workflow is partitioned to optimize the execution. The optimization
is done at the execution enactor level and assumes a fixed structure of the
workflow. In addition, it assumes the scheduling of the activities in order to
make the partition. In our case, we make the workflow partition based on the
knowledge of the activity execution time of the application user or developer
and already obtain performance gain by design. As mentioned before, both
approaches are not opposite, but complementary.

7. Conclusion
We explored the use of patterns to simplify porting of applications on the

Grid. We showed that based on experience and considering execution and data
management models, it was possible to improve the performance of a Grid
application. We proposed the attraction pattern, which takes into account not
only the structure of the application to be ported, but also approximate execution
time and data size. This is a valuable information that only the application
developer or scientist can give to the Grid application developer. We show
how the application of the pattern can improve the execution of a real world
application on the Grid. This is a first step to a set of patterns that could be very
useful for porting more complex applications on the Grid.

Acknowledgment
We would like to thank Johannes Schweifer, Reinhard Bischof, Wolfgang

Jais, and Martin Rabanser for their valuable help.

References
[1] Ganga. http://cern.ch/ganga.

[2] P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz. WIEN2k: An Augmented
Plane Wave plus Local Orbitals Program for Calculating Crystal Properties. Institute
of Physical and Theoretical Chemistry, Vienna University of Technology, Vienna. ISBN
3-9501031-1-2, 2001.

[3] Frank Buschmann, Kevlin Henney, and Douglas C. Schmidt. Pattern-Oriented Software
Architecture: On Patterns and Pattern Languages. Wiley and Sons, 2007.

[4] Rubing Duan, Radu Prodan, and Thomas Fahringer. Run-time optimization for Grid
workflow applications. In International Conference on Grid Computing. IEEE Computer
Society Press, 2006.

[5] Thomas. Fahringer. ASKALON - A Programming Environment and Tool Set for Clus-
ter and Grid Computing. http://dps.uibk.ac.at/askalon, Institute for Computer Science,
University of Innsbruck.

[6] Enabling Grid for E-science (EGEE). Lightweight middleware for grid computing.
http://cern.ch/glite.

[7] Unicore Forum. Unicore. http://www.unicore.org/.

[8] Globus. The globus alliance. http://www.globus.org/toolkit.

Applying Patterns for Porting Complex Workflows onto the Grid 275

[9] E. Katsiri, J. Cohen, J. Darlington, and S. Drossopoulou. Design patterns for grid services.
In 2nd IC SCCE, Athens, Greece, 2006. x.

[10] Berna L. Massingill, Timothy G. Mattson, and Beverly A. Sanders. Reengineering for
parallelism: An entry point for plpp (pattern language for parallel programming) for legacy
applications. In Twelfth Pattern Languages of Programs Workshop (PLoP 2005). bnet,
2005.

[11] Francesco Nerieri, Radu Prodan, Thomas Fahringer, and Hong Linh Truong. Overhead
analysis of Grid workflow applications. In International Conference on Grid Computing.
IEEE Computer Society Press, 2006.

[12] P-Grade. Parallel grid runtime and application developement environment.
http://www.lpds.sztaki.hu/pgrade/.

[13] N. Russell, W.M.P. van der Aalst, and A.H.M. ter Hofstede. Exception handling patterns
in process-aware information systems. Technical report, 2006.

[14] Site. Workflow data patterns. http://www.bpm.fit.qut.edu.au/projects/babel/dp/.

[15] Site. Workflow patterns. http://www.workflowpatterns.com.

[16] Site. Workflow resource patterns. http://www.bpm.fit.qut.edu.au/projects/babel/rp/.

VIII

DATA MANAGEMENT

REAL TIME CLASSIFICATION MECHANISM
FOR THE CAUSES OF DATA LOSS
AND ITS INTEGRATION INTO A HIGH
PERFORMANCE DATA TRANSFER SYSTEM
FOR GRID COMPUTING

Phillip M. Dickens
Department of Computer Science
University of Maine
Orono, Maine 04469
dickens@umcs.maine.edu

Abstract The importance of high-performance communication to the success of Grid ap-
plications makes it critical to develop communication protocols that can take
full advantage of the underlying bandwidth when system conditions permit, can
back-off in response to observed (or predicted) contention within the network,
and can accurately distinguish between these two situations. Achieving this goal
requires the development of classification mechanisms that are both accurate and
efficient enough to execute in real time. In this paper, we discuss one such classi-
fier that is based on the analysis of the patterns of packet loss and the application
of Bayesian statistics. We describe two different analysis techniques that we ap-
ply to such patterns, one based on complexity theory and one based on a simple
measure of the distance between successive packet losses. In addition, we dis-
cuss the integration of the classification mechanism into the control structures of
an existing high-performance data transfer system for computational Grids. We
present empirical results showing that the classifier is extremely accurate, effi-
cient enough to execute in real time, and that utilizing the information it provides
can have a tremendous impact on the performance of a large-scale data transfer.

Keywords: Communication protocols, high-performance networks, Classification Mecha-
nisms, Grid Computing

280

1. Introduction
Computational Grids create powerful distributed computing systems by con-

necting geographically distributed computational/storage facilities via high-
performance networks. Such systems can aggregate tremendous computational
power on a single large-scale problem, enabling scientific discovery in areas
that were heretofore impossible to explore. Critical to the success of such
large-scale Grid applications is a high-performance networking infrastructure
that can efficiently move extreme-scale data sets between nodes on the Grid.
However, even though advances in networking technologies have significantly
increased the bandwidth available to Grid applications, actually obtaining a
large percentage of such bandwidth has turned out to be a difficult issue.

One problem is that TCP, the transport protocol of choice for most wide-area
data transfers, was not designed for and does not perform well in the high-
bandwidth, high-delay networks typical of computational Grids. This has led to
significant research activity aimed at modifying TCP itself to make it compatible
with this new network environment (e.g., Highspeed TCP [15]), as well as
systems that monitor the end-to-end network to diagnose and fix performance
problems (e.g., [2, 22]. An alternative strategy has been the development of
application-level protocols that can largely circumvent the performance issues
of TCP. This includes, for example, UDP- based protocols (e.g., FOBS [10],
UDT [16]), and approaches that spawn multiple TCP streams for a single data
flow (e.g., GridFTP [4]).

UDP-based protocols can be attractive for two reasons: First, some appli-
cations require a smooth transfer rate that can be difficult to obtain with TCP.
Second, such protocols are well-suited for high-bandwidth, high-delay network
environment and are able to obtain a significant percentage of the underlying
bandwidth. However, because UDP-based protocols execute at the application
level, the protocol developer must provide a mechanism to detect and respond
fairly to competing traffic flows. Also, application-level protocols can lose
data packets for any number of reasons unrelated to network congestion. This
second issue can result in very poor performance if the control mechanisms
interpret such loss as growing network contention and, in response, trigger very
aggressive congestion control actions.

This research is developing a classification mechanism that can be Used by
UDP-based protocols to distinguish between data loss caused by network con-
tention from loss caused by factors outside of the network domain. In particular,
we focus on distinguishing between network contention and contention for CPU
resources. This distinction is important because contention for CPU cycles can
be a major contributor to packet loss in UDP-based protocols. This happens,
for example, when the receiver’s socket-buffer becomes full, additional data
bound for the receiver arrives at the host, and the receiver is switched out and

Real Time Classification Mechanism for the Causes of Data Loss 281

thus unavailable to pull such packets off of the network. The receiver could be
switched out for any number of reasons including preemption by a higher pri-
ority system process, interrupt processing, paging activity, and multi-tasking.
This last point is particularly important in a Grid environment where resource
availability, including the CPU cycles allocated to a particular application, can
fluctuate significantly during the execution of a long-running application.

To illustrate the importance of this issue, consider a data transfer with a
sending rate of one gigabit per second and a packet size of 1024 bytes. Given
these parameters, a packet will arrive at the receiving host around every 7.9
micro-seconds, which is approximately the amount of time required to perform
a context switch on the TeraGrid systems [3] used in this research (as measured
by Lmbench [21]). Thus the receiver does not need to be switched-out long
before packets can begin to get dropped. We have observed, for example, tens
to hundreds of packets being dropped when the operating system creates three
to four new processes.

This paper discusses the development of a classification mechanism for the
causes of data loss that is both very accurate and highly efficient. Also, we show
how it is integrated into the control structures of an existing UDP-based data
transfer system, and provide experimental results showing that the use of the
classifier can result in significant performance gains. The classification mech-
anism is based on the analysis of what we term packet-loss signatures, which
show the distribution (or pattern) of those packets that successfully traversed
the end-to-end transmission path and those that did not. These signatures are
essentially large selective-acknowledgment packets that are collected by the
receiver and delivered to the sender upon request. We chose the name “packet-
loss signatures” based on previous studies showing that different causes of data
loss have different “signatures” [12]. In this paper, we briefly describe how
the signatures are analyzed and used by the classifier, and direct the interested
reader to this same paper for a detailed discussion of the approach.

The major contribution of this paper is showing how a classification system
can be developed, integrated into the control mechanisms of a data transfer
system, and used to increase performance. This paper should be of interest to
a large segment of the Grid community given the interest in and importance of
exploring new approaches by which data transfers can be made more intelligent
and efficient.

The rest of the paper is organized as follows. In Section 2, we discuss
related work. In Section 3, we describe FOBS, the data transfer system in
which the classification mechanism is implemented. We provide an overview
of the classification algorithms in Section 4. In Section 5, we discuss the
experimental design and provide the experimental results in Section 6. We
provide our conclusions in Section 7.

282

2. Related Work
The issue of distinguishing between causes of data loss has received signif-

icant attention within the context of TCP for hybrid wired/wireless networks
(e.g., [5, 8]). The idea is to distinguish between losses caused by network con-
gestion and losses caused by errors in the wireless link, and to trigger TCP’s ag-
gressive congestion control mechanisms only in the case of congestion-induced
losses. This ability to classify the root cause of data loss, and to respond ac-
cordingly, has been shown to improve the performance of TCP in this network
environment [5, 20]. These classification schemes are based largely on simple
statistics on observed round- trip times, observed throughput, or the inter-arrival
time between ACK packets [7, 20]. Debate remains, however, as to how well
techniques based on such simple statistics can classify loss [20]. Another ap-
proach being pursued is the use of Hidden Markov Models where the states
are characterized by the mean and standard deviation of the distribution of
round-trip times [20].

Our research has similar goals, although we are developing a finer-grained
classification system to distinguish between network contention and contention
for CPU resources. Another major difference is that the analysis of packet-loss
signatures appears to be a more robust classifier than (for example) statistics on
round-trip times, and could be substituted for such statistics within the mathe-
matical frameworks established in these related works.

Also related are efforts such as Web100 [22] and Pathdiag [1], that provide
sophisticated monitoring systems and tools with which performance issues in
TCP networks can be diagnosed and fixed. The goal of these systems is to pro-
vide ordinary users, i.e., those without significant networking expertise, with
high-performance networking in a completely transparent manner. A major dif-
ference between our work and these related projects is the timescale at which
each operates. In particular, these projects are iterative in nature, with possible
consultation with network administrators between iterations. Our classifica-
tion mechanism performs on a much smaller timescale, where it very quickly
computes the probability that the cause of data loss was within the network or
outside of the network. However, it is unable to diagnose performance problems
such as inadequate buffer sizes, under-configured network paths, or problems
with the software stack as these related works can provide. Thus while the goal
of providing high-performance networking are shared, the problems being ad-
dressed are quite different. In fact, such work is orthogonal to our efforts in that
any improvements to the networking infrastructure such projects can provide
would also benefit the performance of our data transfer system.

Research into other application-level alternatives to TCP is also related (e.g.,
[17]). However, projects such as this do not attempt to determine the root
cause(s) of packet loss that is a major focus of this research.

Real Time Classification Mechanism for the Causes of Data Loss 283

3. Data Transfer System
The test-bed for this research is FOBS1: a high-performance data transfer

system for computational Grids [10]. FOBS is a UDP-based data transfer
system that provides reliability through a selective-acknowledgment and re-
transmission mechanism. It is precisely the information contained within the
selective-acknowledgment packets that is collected and analyzed by the classi-
fication mechanism. FOBS can be executed as a window-based protocol where
all packets within the current transmission window are put onto the network at
a constant sending rate. It can also be used as a rate-based system, where a
constant sending rate is used until a congestion event occurs, at which point a
new sending rate is determined based on the long-term loss rate.

FOBS is multi-threaded to take advantage of nodes with multiple processors
or processors with multiple cores. In such cases, the classification mechanism
can execute as a separate thread that runs concurrently with the ongoing transfer.
In fact, we have observed that when the data sender is executing on a dedicated
node with dual-processors, there is no additional cost incurred by executing the
classifier (that is, the data transfer rate is unchanged when it is executed).

3.1 Congestion Control
An important design goal for FOBS is that it competes fairly with other

network flows. Toward this end, FOBS uses a modified version of the TCP
Friendly Rate Control (TFRC) protocol [18] for its congestion control. TFRC
is equation-based, where the sending rate is computed as a function of the
steady-state loss rate. The primary difference is that FOBS replaces the TFRC
response function with that derived for Highspeed TCP [15], a more aggressive
version of TCP for high- performance network environments with very low
loss rates. The use of this more aggressive congestion control mechanism is
completely appropriate given that FOBS is designed for the well-provisioned,
high-bandwidth, high-delay networks associated with computational Grids, and
is not intended for the Internet1 environment.

We do not discuss the derivation of the HighSpeed TCP response function
here, and direct the interested reader to[15] for a complete analysis. For our
purposes, it is sufficient to note that a parameter termed Low Window is defined,
which sets the lower bound on the congestion window at which the HighSpeed
TCP response function will be used. That is, if the current congestion window
is greater than Low Window, then the HighSpeed response function will be
used to determine the size of the next congestion window in the event of packet
loss. This response function is defined as:

1Fast Object-Based Data Transfer System

284

w = 0.12/p0.835 (1)

Otherwise, the standard TCP response function will be used 2:

w = 1.2/
√

p (2)

where w is the size of the next congestion window and p is the loss rate.

3.1.1 Integration of Classifier into FOBS. While the algorithms used
by the classification mechanism are somewhat complex, the way the information
is used by the controller is relatively simple. When a congestion event occurs,
the classifier is queried to determine the cause of such loss. The classifier then
assigns a probability to the event that the data loss was caused by contention for
CPU resources (and thus one minus this probability that the cause of loss was
network related). If the probability exceeds a certain threshold that the cause of
data loss was CPU related (currently set at 95and the loss rate is not modified.
Otherwise, the cumulative loss rate is updated appropriately, and Equation (1)
or (2) is invoked to determine the new sending rate (depending upon the size of
the current congestion window).

4. Classification Mechanism
Having discussed how the results of the classification mechanism are used in

FOBS, we briefly discuss how these probabilities are computed. The interested
reader is directed to [12–13] for a complete discussion of the statistical analysis.

4.1 Classification Metrics
The classification mechanism is based on the application of Bayesian statis-

tics, which centers on how the value of certain metrics can be used to identify
a cause of packet loss. Assume there are two causes of data loss: network con-
tention and CPU contention. The idea is to find a metric that has very different
statistical properties under the two causes of data loss, the greater the difference
the more accurate the classification.

Our research has identified two excellent metrics upon which the classifi-
cation mechanism is based, both of which are derived from the packet-loss
signatures. The first metric is the complexity of the packet-loss signatures that
is derived using techniques from symbolic dynamics. In symbolic dynamics
[19], the packet-loss signature is viewed as a sequence of symbols drawn from
a finite discrete set, which in our case is two symbols: 1 and 0. One diagnostic
that quantifies the amount of structure in the sequence is complexity. There are

2As noted by the authors, this equation assumes a loss rate that is less than where the effects of TCP retransmit
timeouts can be largely ignored.

Real Time Classification Mechanism for the Causes of Data Loss 285

numerous ways to quantify complexity. In this discussion, we have chosen the
approach of d’Alessandro and Politi [9] which has been applied with success to
quantify the complexity and predictability of time series of hourly precipitation
data [14]. The approach of d’Alessandro and Politi is to view the stream of
1s and 0s as a language and focus on subsequences (or words) of length n in
the limit of increasing values of n (i.e., increasing word length). First-order
complexity, denoted by C1, is a measure of the richness of the language’s vo-
cabulary and represents the asymptotic growth rate of the number of admissible
words of fixed length n occurring within the string as n becomes large. The
number of admissible words of length n, denoted by Na(n), is simply a count
of the number of distinct words of length n found in the given sequence. The
first-order complexity (C1) is defined as

C1 = lim
n→∞

(log 2 Na(n))/n (3)

The first-order complexity metric characterizes the level of randomness or
periodicity in a string of symbols. A string consisting of only one symbol will
have one admissible word for each value of n, and will thus have a value of
C1 = 0. A purely random string will, in the limit, have a value of C1 = 1. A
string that is comprised of a periodic sequence, or one comprising only a few
periodic sequences, will tend to have low values of C1. We have developed
simple empirical models that relate complexity measures to the different causes
of data loss as a function of the loss rate, and it is these models that are used by
the classification mechanism.

While the calculation of complexity measures is simple and efficient, the
size of the words that can be examined in real time (without negatively affect-
ing performance) is somewhat limited. In the experiments reported here, the
maximum word size was set to n = 17, which was sufficient for discerning the
basic structure of the signatures (i.e., either random or periodic) when the loss
rate was greater than approximately 0.0004. However, for significantly lower
loss rates, the dropped packets (and the corresponding 0s in the packet-loss
signatures) were too far apart to be detected with a word size of 17. While
increasing the word size can help, it cannot be increased enough to detect the
randomness in the string at very low loss rates. Thus, complexity measures are
unable to serve as a classification metric at very low loss rates.

To address this issue, we developed another metric based on the distance
between two consecutive dropped packets. The idea is that the fundamental
structure of the packet- loss signatures will not be significantly different at very
low loss rates, and thus data loss caused by CPU contention will still be largely
contiguous in the signature, and loss caused by NIC contention will still be
random. To develop this metric, we define “success” as two consecutive packet
drops (i.e., two consecutive 0s in the signature). We then performed a large

286

number of experiments to learn the proportion of successes for each cause of
data loss at very low loss rates. These proportions were then used as parameters
to a beta distribution (that provides the probability of a given proportion of
successes), in hopes that the statistical properties of the distribution would be
very different under different causes of packet loss. The beta distribution takes
two parameters, a and b, and has the following density function, where p is the
proportion of successes.

pa−1(1 − p)b−1 (4)

Figure 1 shows the considerable difference in the statistical properties of
the complexity metric under both causes of data loss. Figure 1 further shows
the empirical data models derived in association with complexity measures.
This figure demonstrates quite clearly the power of this metric in distinguishing
between causes of data loss. Due to space constraints, we do not show the
differences of the statistical properties for the beta distribution.

Figure 1. This figure shows the mean complexity measures at each data bin, and 95% con-
fidence intervals around the mean, for each cause of data loss. Also, it shows how the data lay
along the fitted data model.

5. Experimental Design
All experiments were conducted on the TeraGrid [3]: a high-performance

computational Grid that connects various supercomputing facilities via net-
works operating at 40 gigabits per second. The two facilities used in these exper-
iments were the San Diego Supercomputing Center (SDSC), and the National
Center for Supercomputing Applications (NCSA, located at the University
of Illinois, Urbana). The host platform at each facility was an IA-64 Linux

Real Time Classification Mechanism for the Causes of Data Loss 287

cluster where each compute node consisted of dual 1.5 GHz Intel Itanium 2
processors. The operating system at both facilities was Linux 2.4.21SMP. Each
compute node had a gigabit Ethernet connection to the TeraGrid network.

We were interested in whether or not the classification mechanism could
improve performance in the case where data loss was caused by contention for
CPU resources. To test this, we executed one set of transfers where the results
of the classification system were used by the controller, and another set where
they were not used (and thus all data loss was assumed to be network related).
We implemented a background process on the data receiver which periodically
caused data to be dropped. The number of packets lost per congestion event
was based largely on operating system behavior (e.g., process scheduling), and
was thus somewhat out of our control. However, the long-term loss rate in all
experiments was on the order of 0.0002. We performed three long data transfers
(of about 3 hours each), under each condition (i.e., results of classifier used/not
used). The results of interest were the percentage of successful classifications
and the throughput achieved in each instance. The classifier used the beta
distribution to compute the required probabilities when the loss rate was <=
0.0004. Otherwise, the complexity measures were used.

We used the technique of direct-execution simulation [11] to determine the
throughput achieved in each situation. In this approach, the behavior of the net-
work connection, the behavior of the system in the presence of contention for
CPU resources, and the packet-loss signatures generated by such contention,
were all obtained by actually executing the data transfer. That is, there was an
ongoing data transfer between NCSA and SDSC and a physical background
process that created contention for CPU resources. The resulting packet-loss
signatures were generated by such contention, and these signatures were an-
alyzed by the classification mechanism in real time (i.e., as the transfer was
progressing). Thus all of these aspects of the problem were real.

However, the results of the classification were provided to the simulator,
which then determined the new (virtual) sending rate and new (virtual) loss rate
by applying the congestion control mechanism described in Section (3.1). The
simulator then computed the number of (virtual) seconds that had elapsed since
its last invocation, and, based on this and the previous (virtual) sending rate,
determined the amount of data that would have been transferred during that
time. It is the throughput calculated by the simulation that is presented in the
experimental results discussed in the following section.

We chose to use this approach because the physical network connection
between the nodes on the TeraGrid was limited by the one gigabit link between
the compute nodes and the backbone network. We wanted to study the impact of
the classification mechanism with essentially the same parameters as those used
to define the HighSpeed TCP response function, which assumed a 10 gigabit
per second connection.

288

6. Experimental Results

Total Percentage Percentage P(CPU |CPU) Av. TP Av.TP
trials of inconclusive of incorrect with without

classifications classifications Classifier Classifier
265 5.6 % 0.7% 94% 8697 mps 168 mps

The results of these experiments are shown in the table above. Column 1
shows that there were 265 congestion events in all six trials combined. Column
2 shows the percentage of the congestion events for which the classification was
inconclusive (returning a probability of 50classifications generally occurred at
very low loss rates (i.e., less than 0.0001). Column 3 shows the percentage
of incorrect diagnoses (0.7 the classifier diagnosed the loss as being network
related when it was in fact CPU related. This again occurred at very loss rates.
Column 4 shows the percentage of times that the classifier diagnosed the loss
as being CPU related when this was in fact the cause (94 second when the
results of the classifier were being utilized (column 6), and when they were not
(column 7).

As can be seen, the diagnostic abilities of the classification mechanism were
quite good, correctly diagnosing the cause of data loss 94unsuccessful, it re-
turned an inconclusive rather than incorrect diagnosis in a vast majority of cases
(15 out of 17). These results also demonstrate that having a real- time clas-
sification mechanism can significantly improve performance when the cause
of data loss is contention for CPU resources (in fact, by orders of magnitude).
These are all very encouraging results.

7. Conclusions
In this paper, we have presented a highly accurate classification mechanism

that can distinguish between data loss caused by contention for CPU resources
from that caused by network contention at loss rates as low as 0.0001. We
have also shown that the classifier can be quite easily integrated into the control
structure of FOBS, an existing high-performance data transfer system for com-
putational Grids. We further discussed that the classifier is efficient enough to
execute in real time, incurring no reduction in the transfer rate when the data
sender is executing on a dedicated dual- processor node. Otherwise, we have
observed a performance penalty of approximately 12 price to pay when the
cause of data loss is largely CPU related.

One question that this research does not answer is how often data will be lost
due to contention for CPU resources. Given the highly dynamic nature of a Grid
environment, it is reasonable to think that contention for CPU resources can

Real Time Classification Mechanism for the Causes of Data Loss 289

become problematic during the execution of a long-running application. In such
circumstances, the technology descried here could be quite useful. However,
if data loss were always caused by network contention, then this technology
would not be particularly helpful. Extensive monitoring of long-running Grid
applications may help to shed light on this question.

References
[1] Enabling High Performance Data Transfers.

http://www.psc.edu/networking/projects/tcptune

[2] Net100: Development of Network Aware Operating Systems.
http://www.csm.ornl.gov/ dunigan/net100/

[3] The Teragrid Project. http://www.teragrid.org

[4] Allcock, W., et.al. Secure, Efficient Data Transport and Replica Management for High-
Performance Data-Intensive Computing. In the Proceedings of the IEEE Mass Storage
Conference, (2001).

[5] Balakrishnan, S., Padmanabhan, V., Seshan, S. and Katz, R. A Comparison of Mecha-
nisms for Improving TCP Performance Over Wireless Links. IEEE/ACM Transactions of
Networking, 5 (6). 756-769.

[6] Balakrishnan, S., Seshan, S., Amir, E. and Katz, R. Improving TCP/IP performance over
wireless networks. In the Proceedings of the ACM MOBICON, (1995). November 1995.

[7] Barman, D. and Matta, I. Effectiveness of Loss Labeling in Improving TCP Performance in
Wired/Wireless Networks. In the Proceedings of the ICNP 2002: The 10th IEEE International
Conference on Network Protocols, (Paris, France, 2002). November 2002.

[8] Biaz, S. and Vaidya, N. Discriminating Congestion Losses From Wireless Losses using
Inter-Arrival Times at the Receiver. In the Proceedings of the IEEE Symposium ASSET ’99,
(Richardson, TX, 1999). March 1999.

[9] D’Alessandro, G. and Politi, A. Hierarchical Approach to Complexity with Applications to
Dynamical Systems. Physical Review Letters, 64 (14). 1609-1612.April 1990.

[10] Dickens, P. FOBS: A Lightweight Communication Protocol for Grid Computing. In the
Proceedings of the Europar 2003, (2003).

[11] Dickens, P., Heidelberger, P. and Nicol, D. Parallelized Direct Execution Simulation of
Message-Passing Parallel Programs. IEEE Transactions on Parallel and Distributed Systems,
7(10). 1090-1105.October 1996.

[12] Dickens, P., Larsen, J. and Nicol, D. Diagnostics for Causes of Packet Loss in a High
Performance Data Transfer System. In the Proceedings of the 2004 IPDPS Conference: The
18th INternational Parallel and Distributed Processing Symposium, (Santa Fe, New Mexico,
2004).

[13] Dickens, P. and Peden, J. Towards a Bayesian Statistical Model for the Classification of
Causes of Data Loss. In the Proceedings of the International Conference on High Performance
Computing and Communications, LNCS 3726.

[14] Elsner, J. and Tsonis, A. Complexity and Predictability of Hourly Precipitation. Journal
of the Atmospheric Scinces, 50(3). 400-405.

[15] Floyd, S. Modifying TCP’s Congestion Control for High Speeds.
http://www.aciri.org/floyd

290

[16] Gu, Y., Hong, X. and Grossman, R.L. Experiences in Design and Implementation of a
High Performance Transport Protocol. In the Proceedings of the SC 2004, (Pittsburgh, PA).
November 6 - 12.

[17] Hacker, T., Noble, B. and Athey, B. Improving Throughput and Maintaining Fairness using
Parallel TCP. In the Proceedings of the IEEE INFOCOM ’04, (2004).

[18] Handley, M., Floyd, S., Padhye, J. and Widmer, J. [RFC 3448] TCP Friendly Rate Control
(TFRC): Protocol Specification.

[19] Hao, B.-L. Elementary Symbolic Dynamics and Chaos in Dissipative Systems World
Scientific, 1988.

[20] Liu, J., Matta, I. and Crovella, M., End-To-End Inference of Loss Nature in a Hybrid
Wired/Wireless Environment. In the Proceedings of the Modeling and Optimization in
Mobile, Ad Hoc, and Wireless Networks (WiOpt ’03), (Sophia-Antipolis, France, 2003).

[21] LMbench. http://www.bitmover.com/lmbench/

[22] Mathis, M., Heffner, J. and Reddy, R. Web100: Extended TCP instrumentation for research,
education and diagnosis. ACM Computer Communications Review, 33 (3).July 2003.

DEPENDABLE GRID SERVICES: A CASE STUDY
WITH OGSA-DAI

Javier Alonso and Jordi Torres
Technical University of Catalonia
Barcelona Supercomputing Center,
Barcelona,Spain
alonso@ac.upc.edu

torres@ac.upc.edu

Luis Moura Silva and Paulo Silva
University of Coimbra
CISUC, Portugal
luis@dei.uc.pt

Abstract Grid middleware usually makes use of several software modules that due to their
complexity and development approach may have some latent bugs and leaks.
These bugs can cause visible performance failures and undesired service crashes.
To cope with this sort of transient failures we present a proactive software rejuve-
nation approach that exploits the use of virtualization middleware. To prove the
effectiveness of our mechanism we decided to apply it to OGSA-DAI, a sound ex-
ample of a middleware that has been widely used in several Grid-related projects.
OGSA-DAI makes use of Tomcat/Axis as the SOAP container and Axis v1.2.1
suffers from memory leaks. When it is not configured properly these leaks will
result in a crash of the OGSA-DAI server. In this paper, we explain the appli-
cation of our rejuvenation scheme in this particular example and we show that
it is easy to get a software-based approach to improve the availability of a Grid
Service even when one of the underlying layers suffers from clear symptoms of
software aging. Our ultimate goal is to give a contribution for the techniques and
concepts that can be used to achieve dependable Grid services.

Keywords: Dependability, High-Availability, Software Rejuvenation, OGSA-DAI, Grid

292

1. Introduction
Grid computing understands the usage of large scale and heterogeneous re-

sources in geographically dispersed sites. The target applications for Grid are
usually long-running. In those systems the overall MTBF (Mean-time-between-
failures) can be even lower than the total execution of a single application. It
is thus mandatory that Grid middleware should have some effective support for
fault-tolerance and mechanisms for high-availability, otherwise Grids cannot
be used.

Most of the failures that happen in nowadays systems are just transient fail-
ures that happen from time to time and can be potentially solved by some auto-
matic action of fault-tolerance. One scenario that is also expectable in complex
software systems, such as any Grid middleware, is the occurrence of software
aging. Aging is usually observed as a progressive degradation through time,
which can lead to system crashes or undesirable hang ups. This phenomena is
particularly troublesome in long-running applications, which can be found in
Grid environments. It has also been observed in telecommunication systems
[1], web-servers [2], enterprise clusters [3], OLTP systems [4] and spacecraft
systems [5].

The most natural procedure to combat software aging is the technique of
software rejuvenation [6]. Two basic approaches for rejuvenation have been
proposed in the literature: time-based and proactive rejuvenation. Time-based
rejuvenation techniques are widely used today in some real production systems,
such as web-servers [7]. Proactive rejuvenation techniques have been studied
in [3–4][8–9] and it is widely understood that this technique of rejuvenation
provides better results than the previous one, resulting in higher availability
and lower costs. In our previous work [17], we have presented a self-recovery
technique that makes use of virtualization. The main goal of the mechanism
is to avoid the occurrence of software aging by applying clean planned restarts
and replicated execution of application-services in different virtual machines
that will be running on top of the same physical server.

The main reasons for using virtualization middleware [10–12] in our solution
is to offer the chance for server consolidation and to support the compatibility at
the level of binary code: no re-compilation or dynamic re-linking is necessary to
port legacy application from physical machines to virtualized machines (VMs).

In this paper, we want to show how useful is our mechanism if we want
to apply it to Grid Services. To achieve this goal we present a case-study
using a very well-known grid middleware: OGSA-DAI. We present the default
performance behavior and the improvement using our self-recovery mechanism.

The rest of the paper is organized as follows: Section 2 presents an overview
about our case-study (OGSA-DAI). Section 3 presents some performance re-
sults taken in two different infrastructures. Section 4 describes our virtualized

Dependable Grid Services: A Case Study with OGSA-DAI 293

clustering approach to obtain dependable Grid Services. Section 5 presents
some new results with the application of our technique into OGSA-DAI and
the measured impact. Finally, Section 6 presents the conclusions of this paper.

2. An Overview about our case-study: OGSA-DAI
One of the most popular Grid middleware packages is OGSA-DAI [13], a

package that allows the remote access to data-resources (files, relational and
XML databases) through a standard front-end based on Web services specifica-
tion. The software includes a collection of components for querying, transform-
ing and delivering data in different ways, and a simple toolkit for developing
client applications. In a short sentence, OGSA-DAI provides a way for users
to Grid-enable their data resources.

The front-end of OGSA-DAI is a set of Web-services that in the case of
WSI require a SOAP container to handle the incoming requests and translate
them to the internal OGSA-DAI engine. This SOAP container is Tomcat/Axis
1.2.1. The detailed description of the OGSA-DAI internal is out-of-scope of
this paper. At the moment OGSA-DAI middleware is used in several im-
portant Grid projects [14], including: AstroGrid, BIoDA, Biogrid, BioSim-
Grid, Bridges, caGrid, COBrA-CT, Data Mining Grid, D-Grid, eDiaMoND,
ePCRN, ESSE, FirstDIG, GEDDM, GeneGrid, GEODE, GEON, GridMiner,
InteliGrid, INWA, ISPIDER, IU-RGRbench, LEAD, MCS, myGrid, N2Grid,
OntoGrid, ODD-Genes, OGSA-WebDB, Provenance, SIMDAT, Secure Data
Grid, SPIDR, UNIDART and VOTES. This list is clear representative of the
importance of OGSA-DAI and the relevance of this particular benchmarking
study.

3. Performance Study
In this section we present some performance figures of OGSA-DAI (version

WSI 2.2) taken with different configurations and workloads to have a better
view of its performance.

3.1 Experiments in Grid5000
In [16], the authors present a benchmarking study of OGSA-DAI. That study

has been made with the use of QUAKE [9], a dependability benchmarking tool
that was developed to evaluate the performability and dependability figures of
Grid and Web-Services. That study was conducted on Grid5000, an experimen-
tal platform dedicated to computer science for the study of grid algorithms, and
partially founded by the French incentive action “ACI Grid”. Grid5000 consists
of 14 clusters located in 9 French cities with 40 to 450 processors each, with
a total of 1928 processors. Most of the tests were executed on Grid Explorer
which is a major component of the Grid5000.

294

Figure 1. Results with OGSA-DAI (WSI) application scope

One of the experiments was executed with the default configuration of OGSA-
DAI. It was conducted with 25 nodes, each one executing 100,000 requests. All
nodes were dual-processors AMD Opterons running at 2.0GHz with 2GB of
RAM, and each computer has a 80 GB IDE hard drive and a GigaEthernet net-
work interface card. The server was running with a Debian Linux Operating
system, with a kernel 2.6.13-5, including java 1.5.0, Tomcat 5.0.28, Axis 1.2.1
and OGSA-DAI WSI 2.2.

The results are presented in Figure 1. This experiment shows that the default
configuration of OGSA-DAI presents a quite stable level of performance. In that
configuration the OGSA-DAI Web-services are instantiated with application
scope. This means the service is instantiated only once and is shared by every
request of every different client. This is not the usual way of deploying Web-
Services unless the service is completely stateless or provides global data that
should be shared by all the clients. It is more common to instantiate the services
as session scope. This way it is possible to avoid sharing between different users
and it is possible to correlate different requests from the same user. However, if
we configure OGSA-DAI with session scope it is very prone to the occurrence
of software aging: not because there is any bug on OGSA-DAI, but because
it makes use of Apache/Axis (v1.2) that is known to be an unreliable SOAP
router due to the existence of internal memory leaks.

The results with session scope are presented in Figure 2. This result was taken
with a burst workload and we can observe a very unstable level of performance
leading to frequent suffered hangs up and crashes of the OGSA-DAI server.
Right to be truth, this only happens when the web-services are configured with
scope session. In application scope the internal leaks of Axis are not triggered
and the problem is not spotted in the performance figures of OGSA-DAI.

3.2 Experiments with a Local Cluster
In this sub-section we present some similar results that were collected in

a small cluster in the University of Coimbra. In these experiments we used

Dependable Grid Services: A Case Study with OGSA-DAI 295

Figure 2. Results with OGSA-DAI (WSI) session scope

a cluster of 5 machines: 3 running the client benchmark application, one for
the Database Server (Tania) and another server for the grid-services front-end
(Katrina). All the machines were interconnected with a 100 Mbps Ethernet
switch. The detailed description of the machines is presented in Table 1.

In Figure 3 we present the latency of the OGSA-DAI server when applying
different constant workloads of 1 request every 10, 20 and 30 seconds every
client. In Figure 4 is presented the latency with a burst workload. It can be
seen that in both cases the latency is completely unstable. Figure 5 presents the
throughput that is measured when applying a burst mode.

Katrina Tania Clients Machines

CPU Dual AMD64 Opteron
(2000MHz)

Dual Core AMD64
Opteron 165 (1800MHz)

Intel Celeron
(1000MHz)

Memory 4GB 2GB 512MB
Hard Disk 160GB (SATA2) 160GB (SATA2)
Swap Space 8GB 4GB 1024MB
Operating System Linux 2.6.16.21-0.25-

smp
Linux 2.6.16.21-0.25-
smp

Linux 2.6.15-p3- net-
boot

Java JDK 1.5.0 06, 64-bit Server
VM

1.5.0 06-b05 Standard
Edition

Tomcat JVM heap
size

1024MB

Other Software Apache Tomcat 5.0.28,
Axis 1.2.1 and OGSA-
DAI WSI 2.2

MySQL 5.0.18

Table 1. Detailed Machines Description

Figure 6 presents the memory usage of the Tomcat JVM. It can be seen that
the server starts to make a fast use of memory that is not made free by the Java
garbage collector. When the server starts to run in the memory limits it starts
to lose requests, as presented in Figure 7. If we want to use OGSA-DAI in
some real applications that would require a configuration of session scope in
the web-services front-end then this behavior is totally unacceptable.

296

Figure 3. Latency with constant workloads Figure 4. Latency with Burst workload

Figure 5. Throughput performance Figure 6. OGSA-DAI Memory consumption

Figure 7. OGSA-DAI Requests missed during 1 hour with burst workload

OGSA-DAI WSI 2.2 is using of an unreliable SOAP router: Axis v1.2. Since
this SOAP module suffers from severe memory leaks it can clearly undermine
the reliability level of any Grid deployment based on OGSA-DAI.

The best solution is definitely to re-engineer the OGSA-DAI WSI imple-
mentation by making a new version or by using Axis v2, a more reliable imple-
mentation of SOAP from the Apache group. For the time-being we decided to
select the current WSI version of OGSA-DAI as a case-study. We applied our

Dependable Grid Services: A Case Study with OGSA-DAI 297

rejuvenation mechanism to this Grid middleware and we observed if it would
work effectively without changing any piece of the grid software. Next section
we presented a summary description of our mechanism.

4. A Rejuvenation Scheme by using Virtualized
Clustering

Our approach has been designed to use over any server or service. It is just
necessary to install a virtualization layer and install some software modules.
We have adopted XEN [15] virtualized middleware in our experiments, but
we may have used any virtualization middleware. On top of our virtualization
layer we create 3 virtual-machines: one VM to run a software load-balancer
(VM-LB); one VM to run the main OGSA-DAI server; and a third VM where
we create a hot-standby replica of the OGSA-DAI server. The VM-LB also
runs some other software modules that will be responsible for the detection of
software aging or other potential anomalies. When something anomalous is
detected this module will trigger a rejuvenation action. In this action we do
not restart the main server right away: we start the standby server, all the new
requests and sessions are sent by the LB to this second server. The session-state
is migrated from the primary to the secondary server and we wait for all the
on-going requests to be finished in the primary server. When we are able to
do this we can restart the main server without losing any in-flight request or
session state. We call this a “clean” restart. During that restart process no
in-flight request is lost, since we have a window of execution where we have
both servers running in active mode. When all the requests are finished in the
main server, then the server is restarted, as shown in Figure 8.

Figure 8. Virtualized Clustering for Server Rejuvenation process

For lack of space, we refer the interested reader about the details of this re-
juvenation mechanism to [17]. The most we can say is that the deployment of
this framework is straightforward and does not require any change to the appli-
cations or the middleware containers. They are also neutral to the virtualization
layer. Our scheme was applied to some other benchmarks in [17] and in the
next section we present the results collected with OGSA-DAI.

298

5. Experimental results
To demonstrate the effectiveness of our rejuvenation mechanism we decided

to make a deployment of OGSA-DAI using our virtualized clustering scheme
followed by the installation of some software modules that provide the support
for anomaly and aging detection and the triggering of rejuvenation actions.
Since the problem of OGSA-DAI WSI 2.2 was spotted due to the memory
leaks of Axis1.2 we decided to configure our framework to trigger some planned
restarts depending on some thresholds of the memory usage. The memory use
is collected every 10 seconds and when the available memory falls down that
defined threshold our mechanism applies a clean and planned restart that, as a
matter of fact, does not produce any downtime to the OGSA-DAI service.

In Figure 9 and Figure 10 we present the latency and throughput figures.
First, we executed an experiment for one hour with 3 clients using a burst
distribution workload. In this case we used the normal version of OGSA-DAI,
with session scope.

Figure 9. Latency (normal execution) vs
Latency (with self-rejuvenation)

Figure 10. Throughput(normal execution)
vs Throughput (with self-rejuvenation)

Then we executed the same experiment but this time by applying our self-
recovery mechanisms based on proactive restarts of the OGSA-DAI server. Our
mechanism was configured to trigger a rejuvenation action when OGSA-DAI
memory usage achieved around 50% of maximum memory usage (1024MB).

In Figure 11 we present the graph with the memory usage from one of servers.
The graph clearly shows the moments in time when a rejuvenation action is
triggered. In Table 2 we present more detailed numbers. We can observe that
our approach achieve a very acceptable performance without any disruption of
the service. Our approach was able to achieve a better throughput and latency
than the default OGSA-DAI without missing any request. This proves the
effectiveness of our scheme: we have been able to increase the availability and
the performance of a Grid-Service that suffers from internal memory leaks in
the SOAP layer. Our scheme brings a contribution for dependability.

Dependable Grid Services: A Case Study with OGSA-DAI 299

Figure 11. Memory Usage Performance using Self Recovery mechanism

Avg. Latency Avg. Throughput Avg. Memory Usage Miss Requests

OGSA-DAI (normal
version)

29013,2 ms 0,105 req/s 1100784,4 Bytes 25

OGSA-DAI (with
self-rejuvenation

9049,5 ms 0,345 req/s 313384,0 Bytes 0

Table 2. Detailed results from 1 hour of execution

6. Conclusions
In this paper, we have presented the application of a self-healing mechanism

that was developed by us in a case-study of a Grid-Service: OGSA-DAI. The
normal version of this middleware suffers from some aging problems due to
the use of Axis v1.2. The resulting performance is really unstable and we have
been able to spot some undesired hang-ups when applying a burst distribution.
We decided to apply our rejuvenation mechanism based on the thresholds alerts
in the memory usage and we have been able to increase the availability and
performance of OGSA-DAI without incurring in any additional investment of
hardware: it is only necessary to install a virtualization layer and a set of
software modules that provide support for self-recovery actions. The results
presented in this paper clearly show the potential of our approach to achieve a
dependable grid service.

Acknowledgments
This research work is supported by the FP6 Network of Excellence Core-

GRID funded by the European Commission (Contract IST-2002-004265) and
the Ministry of Science and Technology of Spain and the European Union
(FEDER funds) under contract TIN2004-07739-C02-01.

300

References
[1] A.Avritzer, E.Weyuker. Monitoring Smoothly Degrading Systems for Increased Depend-

ability. Empirical Software Eng. Journal, Vol 2, No 1, pp. 59-77, 1997

[2] Apache.[Online] http://httpd.apache.org/docs/

[3] V.Castelli, R.Harper, P.Heidelberg, S.Hunter, K.Trivedi, K.Vaidyanathan, W.Zeggert.
Proactive Management of Software Aging. IBM Journal Research & Development, Vol.
45, No. 2, Mar. 2001

[4] K.Cassidy, K.Gross, A.Malekpour. Advanced Pattern Recognition for Detection of Com-
plex Software Aging Phenomena in Online Transaction Processing Servers. Proc. of the
2002 Int. Conf. on Dependable Systems and Networks, DSN-2002

[5] A.Tai, S.Chau, L.Alkalaj, H.Hecht. it On-board Preventive Maintenance: Analysis of
Effectiveness an Optimal Duty Period. Proc. 3rd Workshop on Object-Oriented Real-
Time Dependable Systems, 1997

[6] Y.Huang, C.Kintala, N.Kolettis, N. Fulton. Software Rejuvenation: Analysis, Module and
Applications. Proc. of Fault-Tolerant Computing Symposium, FTCS-25, June 1995

[7] K.Vaidyanathan, K.Trivedi. A Comprehensive Model for Software Rejuvenation. IEEE
Trans. on Dependable and Secure Computing, Vol, 2, No 2,April- 2005

[8] K.Kaidyanathan, K.Gross. Proactive Detection of Software Anomalies through MSET.
Workshop on Predictive Software Models (PSM 2004), Sept. 2004

[9] L.Silva, H.Madeira and J.G.Silva. Software Aging and Rejuvenation in a SOAP-based
Server. IEEE-NCA: Network Computing and Applications, Cambridge USA, July 2006

[10] M. Rosenblum and T. Garfinkel. Virtual Machine Monitors: Current Technology and
Future Trends. IEEE Internet Computing, May 2005, Vol. 38, No. 5.

[11] R. Figueiredo, P. Dinda, J. Fortes. Resource Virtualization Renaissance. IEEE Computer,
38(5), pp. 28-69, May 2005

[12] Renato J. Figueiredo , Peter A. Dinda , José A. B. Fortes. A Case For Grid Computing
On Virtual Machines. Proceedings of the 23rd International Conference on Distributed
Computing Systems, p.550, May 19-22, 2003

[13] OGSA-DAI.[Online] http://www.ogsadai.org.uk/

[14] Projects that use OGSA-DAI.[Online] http://www.ogsadai.org.uk/about/projects.php

[15] XEN Source.[Online] http://www.xensource.com/.

[16] W. Hoarau, S. Tixeuil, N. Rodrigues, D. Sousa, and L. Silva. Benchmarking the OGSA-DAI
Middleware CoreGRID Technical Report Number TR-0060. October 5, 2006.

[17] Luis Silva, Javier Alonso, Paulo Silva, Jordi Torres and Artur Andrzejak. Using Virtu-
alization to Improve Software Rejuvenation Proceedings of the 6th IEEE International
Symposium on Network Computing and Applications (IEEE NCA07). 12-14 July, 2007.
Cambridge, MA USA.

Author Index

Agapi, Andrei, 141
Aldinucci, Marco, 205
Alonso, Javier, 291
André, Françoise, 117
Anjomshoaa, Ali, 3
Arenas, Alvaro E., 63
Bal, Henri, 141
Barz, Christoph, 193
Basermann, Achim, 3
Baude, Françoise, 95
Benkner, Siegfried, 107
Bouziane, Hinde Lilia, 117
Bubak, Marian, 95
Buisson, Jérémy, 117
Caromel, Denis, 95
Chakrabarti, Anirban, 215
Coppola, Massimo, 73
Corcho, Oscar, 165
Damodaran, Anish, 215
Danelutto, Marco, 205
Dickens, Phillip M., 279
Dikaiakos, Marios, 165
Dumitrescu, Cǎtǎlin, 15, 225
Dünnweber, Jan, 225
Eickermann, Thomas, 193
Elmroth, Erik, 175
Enaganti, Srujan Kumar, 215
Epema, Dick, 15
Fahringer, Thomas, 239, 265
Farkas, Zoltan, 253
Fisher, Mike, 3
Focht, Erich, 73
Foster, Ian, 225
Franke, Carsten, 73
Gardfjäll, Peter, 175
Goble, Carole, 165
Gorlatch, Sergei, 225
Haridi, Seif, 151
Henrio, Ludovic, 95
Hermann, Gabor, 253
Hohl, Adolf, 73
Iosup, Alexandru, 15
Jeannot, Emmanuel, 131
Johnson, Ian, 53

Junaid, Malik, 265
Jégou, Yvon, 73
Kacsuk, Peter, 253
Kielmann, Thilo, 141
Kilpatrick, Peter, 205
Kiss, Tamas, 253
Kouřil, Daniel, 83
Kuba, Martin, 83
Kyriazis, Dimosthenis, 37
Laforenza, Domenico, 37
Lakhani, Amit, 53, 73
Lee, Rubao, 73
Lucka, Maria, 107
Lüdeking, Philipp, 225
Malawski, Maciej, 95
Matthews, Brian, 53, 73
Menychtas, Andreas, 37
Mohamed, Hashim, 15
Morel, Matthieu, 95
Morin, Christine, 73
Moser, Monika, 151
Müller-Pfefferkorn, Ralph, 185
Naqvi, Syed, 53
Neumann, Reinhard, 185
Norberg, Arvid, 175
Ostberg, Per-Olov, 175
Pazat, Jean-Louis, 117
Pilz, Markus, 193
Plankensteiner, Kassian, 239
Procházka, Michal, 83
Pérez, Christian, 117
Qin, An, 73
Qin, Jun, 239
Raicu, Ioan, 225
Rehn-Sonigo, Veronika, 27
Robinson, Philip, 73
Scheuermann, Bernd, 73
Schmidt, Rainer, 107
Siddiqui, Mumtaz, 265
Silaghi, Gheorghe Cosmin, 53, 63
Silva, Luis Moura, 63, 291
Silva, Paulo, 291
Silvestri, Fabrizio, 37
Sipos, Gergely, 253

302

Snelling, David, 3
Sonmez, Ozan, 15
Steffenel, Luiz Angelo, 131
Surridge, Mike, 3
Sánchez, Oscar David, 73
Tordsson, Johan, 175
Torres, Jordi, 291
Tserpes, Konstantinos, 37
Varvarigou, Theodora, 37
Villazón, Alex, 265

Vladusic, Daniel, 73
Westphal, Lidia, 193
Wieczorek, Marek, 239
Wieder, Philipp, 3
William, Thomas, 185
Wray, Francis, 3
Wäldrich, Oliver, 193
Xing, Wei, 165
Yang, Erica, 53, 73
Yu, Haiyan, 73
Ziegler, Wolfgang, 193

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

